版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆銅陵市第一中學(xué)高考全國統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.國務(wù)院發(fā)布《關(guān)于進(jìn)一步調(diào)整優(yōu)化結(jié)構(gòu)、提高教育經(jīng)費(fèi)使用效益的意見》中提出,要優(yōu)先落實(shí)教育投入.某研究機(jī)構(gòu)統(tǒng)計(jì)了年至年國家財(cái)政性教育經(jīng)費(fèi)投入情況及其在中的占比數(shù)據(jù),并將其繪制成下表,由下表可知下列敘述錯(cuò)誤的是()A.隨著文化教育重視程度的不斷提高,國在財(cái)政性教育經(jīng)費(fèi)的支出持續(xù)增長B.年以來,國家財(cái)政性教育經(jīng)費(fèi)的支出占比例持續(xù)年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財(cái)政性教育經(jīng)費(fèi)的支出增長最多的年份是年2.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長度而得到,則函數(shù)的解析式為()A. B.C. D.3.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.4.已知函數(shù)的圖象與直線的相鄰交點(diǎn)間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.5.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.6.已知,則下列不等式正確的是()A. B.C. D.7.已知雙曲線,為坐標(biāo)原點(diǎn),、為其左、右焦點(diǎn),點(diǎn)在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.8.已知實(shí)數(shù)x,y滿足約束條件,若的最大值為2,則實(shí)數(shù)k的值為()A.1 B. C.2 D.9.已知等比數(shù)列的前項(xiàng)和為,且滿足,則的值是()A. B. C. D.10.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.11.若函數(shù),在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.復(fù)數(shù)()A. B. C.0 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____14.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則15.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎(jiǎng),有人走訪了四位歌手,甲說“是乙或丙獲獎(jiǎng).”乙說:“甲、丙都未獲獎(jiǎng).”丙說:“我獲獎(jiǎng)了”.丁說:“是乙獲獎(jiǎng).”四位歌手的話只有兩句是對(duì)的,則獲獎(jiǎng)的歌手是__________.16.設(shè)滿足約束條件且的最小值為7,則=_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,且曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;(2)設(shè)直線上的定點(diǎn)在曲線外且其到上的點(diǎn)的最短距離為,試求點(diǎn)的坐標(biāo).18.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.19.(12分)如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.20.(12分)已知函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱,且.(1)解關(guān)于的不等式;(2)如果對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.21.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點(diǎn)是棱的中點(diǎn),,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.22.(10分)已知矩陣,,若矩陣,求矩陣的逆矩陣.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
觀察圖表,判斷四個(gè)選項(xiàng)是否正確.【詳解】由表易知、、項(xiàng)均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項(xiàng)錯(cuò)誤.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表,正確認(rèn)識(shí)圖表是解題基礎(chǔ).2、A【解析】
由圖根據(jù)三角函數(shù)圖像的對(duì)稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.3、B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).4、A【解析】
由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點(diǎn)間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點(diǎn)睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對(duì)新定義的理解.5、A【解析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.6、D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng).【詳解】已知,賦值法討論的情況:(1)當(dāng)時(shí),令,,則,,排除B、C選項(xiàng);(2)當(dāng)時(shí),令,,則,排除A選項(xiàng).故選:D.【點(diǎn)睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng),是一種簡單有效的方法,屬于中等題.7、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點(diǎn)睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點(diǎn)到漸近線的距離等于虛軸長度的一半.8、B【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時(shí),x在點(diǎn)B處取得最大值,即,得;當(dāng)時(shí),z在點(diǎn)C處取得最大值,即,得(舍去).故選:B.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.9、C【解析】
利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).10、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.11、D【解析】
利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域?yàn)?,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時(shí),成立,即,且,解得.所以的取值范圍是.故選:D【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.12、C【解析】略二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點(diǎn)睛】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.14、-5【解析】
畫出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點(diǎn)A時(shí),z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點(diǎn)A【點(diǎn)睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會(huì)在可行域的端點(diǎn)或邊界上取得。15、丙【解析】若甲獲獎(jiǎng),則甲、乙、丙、丁說的都是錯(cuò)的,同理可推知乙、丙、丁獲獎(jiǎng)的情況,可知獲獎(jiǎng)的歌手是丙.考點(diǎn):反證法在推理中的應(yīng)用.16、3【解析】
根據(jù)約束條件畫出可行域,再把目標(biāo)函數(shù)轉(zhuǎn)化為,對(duì)參數(shù)a分類討論,當(dāng)時(shí)顯然不滿足題意;當(dāng)時(shí),直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,再由最小值為7,得出結(jié)果;當(dāng)時(shí),的截距沒有最小值,即z沒有最小值;當(dāng)時(shí),的截距沒有最大值,即z沒有最小值,綜上可得出結(jié)果.【詳解】根據(jù)約束條件畫出可行域如下:由,可得出交點(diǎn),由可得,當(dāng)時(shí)顯然不滿足題意;當(dāng)即時(shí),由可行域可知當(dāng)直線經(jīng)過可行域中的點(diǎn)A時(shí),截距最小,即z有最小值,即,解得或(舍);當(dāng)即時(shí),由可行域可知的截距沒有最小值,即z沒有最小值;當(dāng)即時(shí),根據(jù)可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時(shí).故答案為:3.【點(diǎn)睛】本題主要考查線性規(guī)劃問題,約束條件和目標(biāo)函數(shù)中都有參數(shù),要對(duì)參數(shù)進(jìn)行討論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的普通方程為.的直角坐標(biāo)方程為(2)(-1,0)或(2,3)【解析】
(1)對(duì)直線的參數(shù)方程消參數(shù)即可求得直線的普通方程,對(duì)整理并兩邊乘以,結(jié)合,即可求得曲線的直角坐標(biāo)方程。(2)由(1)得:曲線C是以Q(1,1)為圓心,為半徑的圓,設(shè)點(diǎn)P的坐標(biāo)為,由題可得:,利用兩點(diǎn)距離公式列方程即可求解?!驹斀狻拷猓海?)由消去參數(shù),得.即直線的普通方程為.因?yàn)橛?,∴曲線的直角坐標(biāo)方程為(2)由知,曲線C是以Q(1,1)為圓心,為半徑的圓設(shè)點(diǎn)P的坐標(biāo)為,則點(diǎn)P到上的點(diǎn)的最短距離為|PQ|即,整理得,解得所以點(diǎn)P的坐標(biāo)為(-1,0)或(2,3)【點(diǎn)睛】本題主要考查了參數(shù)方程化為普通方程及極坐標(biāo)方程化為直角坐標(biāo)方程,還考查了轉(zhuǎn)化思想及兩點(diǎn)距離公式,考查了方程思想及計(jì)算能力,屬于中檔題。18、(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識(shí),可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.【點(diǎn)睛】本題主要考查線線垂直、線面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運(yùn)算求解的能力,屬于中檔題.19、(1).(2).【解析】分析:(1)直接建立空間直角坐標(biāo)系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求解即可;(2)先分別得出兩個(gè)面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點(diǎn),,,分別為軸,軸,軸建立如圖空間直角坐標(biāo)系,由,,得,,,,,,則,,,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為.()由()可得,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故二面角的余弦值為.點(diǎn)睛:考查空間立體幾何的線面角,二面角問題,一般直接建立坐標(biāo)系,結(jié)合向量夾角公式求解即可,但要注意坐標(biāo)的正確性,坐標(biāo)錯(cuò)則結(jié)果必錯(cuò),務(wù)必細(xì)心,屬于中檔題.20、(1)(2)【解析】試題分析:(1)由函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱可得的表達(dá)式,再去掉絕對(duì)值即可解不等式;(2)對(duì),不等式成立等價(jià)于,去絕對(duì)值得不等式組,即可求得實(shí)數(shù)的取值范圍.試題解析:(1)∵函數(shù)和的圖象關(guān)于原點(diǎn)對(duì)稱,∴,∴原不等式可化為,即或,解得不等式的解集為;(2)不等式可化為:,即,即,則只需,解得,的取值范圍是.21、(1)見解析(2)【解析】
(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進(jìn)而證得結(jié)論.(2)過作交于,由為的中點(diǎn),結(jié)合已知有平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 軟件產(chǎn)品采購合同樣本
- 計(jì)算機(jī)網(wǎng)絡(luò)設(shè)備采購及銷售單
- 采購合同中的數(shù)據(jù)保護(hù)
- 附帶擔(dān)保的借款合同應(yīng)注意什么
- 房屋買賣合同中的產(chǎn)權(quán)轉(zhuǎn)移
- 定制分期付款借款合同
- 建筑鋼管租借合同范例
- 武漢貨物運(yùn)輸業(yè)務(wù)合同范例
- 權(quán)利平移合同范例
- 買房合同范例是正式合同
- 尋貓啟事標(biāo)準(zhǔn)范文
- 高中音樂-《錦雞出山》教學(xué)課件設(shè)計(jì)
- DB51T3062-2023四川省高標(biāo)準(zhǔn)農(nóng)田建設(shè)技術(shù)規(guī)范
- 輪轂產(chǎn)品設(shè)計(jì)參考手冊(cè)2007
- 中國姓氏名字文化
- 部編版八年級(jí)歷史上冊(cè)《第18課九一八事變與西安事變》教案及教學(xué)反思
- 2023年成都市生物畢業(yè)會(huì)考知識(shí)點(diǎn)含會(huì)考試題及答案
- 高速公路總監(jiān)辦年度平安總結(jié)
- 2023年小學(xué)德育處三年發(fā)展規(guī)劃
- 高中走讀申請(qǐng)書范文(必備5篇)-1
- 國家開放大學(xué)《管理學(xué)基礎(chǔ)》形考任務(wù)4參考答案
評(píng)論
0/150
提交評(píng)論