2025屆黑龍江省林口林業(yè)局中學(xué)高考數(shù)學(xué)二模試卷含解析_第1頁(yè)
2025屆黑龍江省林口林業(yè)局中學(xué)高考數(shù)學(xué)二模試卷含解析_第2頁(yè)
2025屆黑龍江省林口林業(yè)局中學(xué)高考數(shù)學(xué)二模試卷含解析_第3頁(yè)
2025屆黑龍江省林口林業(yè)局中學(xué)高考數(shù)學(xué)二模試卷含解析_第4頁(yè)
2025屆黑龍江省林口林業(yè)局中學(xué)高考數(shù)學(xué)二模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆黑龍江省林口林業(yè)局中學(xué)高考數(shù)學(xué)二模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),若函數(shù)在區(qū)間上有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.2.已知角的終邊經(jīng)過(guò)點(diǎn)P(),則sin()=A. B. C. D.3.設(shè)是虛數(shù)單位,則“復(fù)數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件4.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.5.已知斜率為k的直線l與拋物線交于A,B兩點(diǎn),線段AB的中點(diǎn)為,則斜率k的取值范圍是()A. B. C. D.6.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無(wú)數(shù)條直線與l相交7.已知m為實(shí)數(shù),直線:,:,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.9.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.10.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.11.已知非零向量,滿足,,則與的夾角為()A. B. C. D.12.黨的十九大報(bào)告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長(zhǎng)點(diǎn)、形成新動(dòng)能.共享經(jīng)濟(jì)是公眾將閑置資源通過(guò)社會(huì)化平臺(tái)與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對(duì)企業(yè)經(jīng)濟(jì)活躍度的影響,在四個(gè)不同的企業(yè)各取兩個(gè)部門進(jìn)行共享經(jīng)濟(jì)對(duì)比試驗(yàn),根據(jù)四個(gè)企業(yè)得到的試驗(yàn)數(shù)據(jù)畫出如下四個(gè)等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則a的取值范圍是______.14.已知數(shù)列的前項(xiàng)和為,,,,則滿足的正整數(shù)的所有取值為_(kāi)_________.15.已知為雙曲線:的左焦點(diǎn),直線經(jīng)過(guò)點(diǎn),若點(diǎn),關(guān)于直線對(duì)稱,則雙曲線的離心率為_(kāi)_________.16.已知點(diǎn)是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),若,則線段中點(diǎn)的縱坐標(biāo)為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在邊長(zhǎng)為的正方形,分別為的中點(diǎn),分別為的中點(diǎn),現(xiàn)沿折疊,使三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.(1)判別與平面的位置關(guān)系,并給出證明;(2)求多面體的體積.18.(12分)已知函數(shù),其中.(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè).若在上恒成立,求實(shí)數(shù)的最大值.19.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),求證:對(duì)于,恒成立;(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.20.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.21.(12分)已知函數(shù).(1)若,證明:當(dāng)時(shí),;(2)若在只有一個(gè)零點(diǎn),求的值.22.(10分)已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),Sn為等差數(shù)列{an}的前n項(xiàng)和,.(1)求數(shù)列{an}的通項(xiàng)an;(2)設(shè)bn=an?3n,求數(shù)列{bn}的前n項(xiàng)和Tn.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】令,可得.在坐標(biāo)系內(nèi)畫出函數(shù)的圖象(如圖所示).當(dāng)時(shí),.由得.設(shè)過(guò)原點(diǎn)的直線與函數(shù)的圖象切于點(diǎn),則有,解得.所以當(dāng)直線與函數(shù)的圖象切時(shí).又當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),有,解得.結(jié)合圖象可得當(dāng)直線與函數(shù)的圖象有3個(gè)交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個(gè)零點(diǎn)時(shí),實(shí)數(shù)的取值范圍是.選D.點(diǎn)睛:已知函數(shù)零點(diǎn)的個(gè)數(shù)(方程根的個(gè)數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對(duì)于一些比較復(fù)雜的函數(shù)的零點(diǎn)問(wèn)題常用此方法求解.2、A【解析】

由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項(xiàng).3、D【解析】

結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項(xiàng).【詳解】若復(fù)數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時(shí)復(fù)數(shù),不是純虛數(shù),所以“復(fù)數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點(diǎn)睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.4、B【解析】

據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點(diǎn)睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.5、C【解析】

設(shè),,,,設(shè)直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達(dá)定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設(shè)直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點(diǎn)為,,,,,,,,把代入,得,,,故選:【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,考查了韋達(dá)定理的應(yīng)用,屬于中檔題.6、D【解析】

通過(guò)條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.7、A【解析】

根據(jù)直線平行的等價(jià)條件,求出m的值,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】當(dāng)m=1時(shí),兩直線方程分別為直線l1:x+y﹣1=0,l2:x+y﹣2=0滿足l1∥l2,即充分性成立,當(dāng)m=0時(shí),兩直線方程分別為y﹣1=0,和﹣2x﹣2=0,不滿足條件.當(dāng)m≠0時(shí),則l1∥l2?,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,則m=1,即“m=1”是“l(fā)1∥l2”的充要條件,故答案為:A【點(diǎn)睛】(1)本題主要考查充要條件的判斷,考查兩直線平行的等價(jià)條件,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)本題也可以利用下面的結(jié)論解答,直線和直線平行,則且兩直線不重合,求出參數(shù)的值后要代入檢驗(yàn)看兩直線是否重合.8、C【解析】

設(shè)M,N,P分別為和的中點(diǎn),得出的夾角為MN和NP夾角或其補(bǔ)角,根據(jù)中位線定理,結(jié)合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據(jù)題意畫出圖形:設(shè)M,N,P分別為和的中點(diǎn),則的夾角為MN和NP夾角或其補(bǔ)角可知,.作BC中點(diǎn)Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點(diǎn)睛】此題考查異面直線夾角,關(guān)鍵點(diǎn)通過(guò)平移將異面直線夾角轉(zhuǎn)化為同一平面內(nèi)的夾角,屬于較易題目.9、C【解析】

對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)椋谏喜皇菃握{(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開(kāi)口向上的拋物線,對(duì)稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.10、A【解析】

根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.11、B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.12、D【解析】根據(jù)四個(gè)列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門的發(fā)展有顯著效果,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

函數(shù)等價(jià)為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價(jià)為,且時(shí),遞增,時(shí),遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的單調(diào)性的判斷和運(yùn)用:解不等式,考查轉(zhuǎn)化思想和運(yùn)算能力,屬于中檔題.14、20,21【解析】

由題意知數(shù)列奇數(shù)項(xiàng)和偶數(shù)項(xiàng)分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗(yàn)即可.【詳解】解:由題意知數(shù)列的奇數(shù)項(xiàng)構(gòu)成公差為的等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比為的等比數(shù)列,則;.當(dāng)時(shí),,.當(dāng)時(shí),,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21【點(diǎn)睛】本題考查等差數(shù)列與等比數(shù)列通項(xiàng)與求和公式,是綜合題,分清奇數(shù)項(xiàng)和偶數(shù)項(xiàng)是解題的關(guān)鍵.15、【解析】

由點(diǎn),關(guān)于直線對(duì)稱,得到直線的斜率,再根據(jù)直線過(guò)點(diǎn),可求出直線方程,又,中點(diǎn)在直線上,代入直線的方程,化簡(jiǎn)整理,即可求出結(jié)果.【詳解】因?yàn)闉殡p曲線:的左焦點(diǎn),所以,又點(diǎn),關(guān)于直線對(duì)稱,,所以可得直線的方程為,又,中點(diǎn)在直線上,所以,整理得,又,所以,故,解得,因?yàn)?,所?故答案為【點(diǎn)睛】本題主要考查雙曲線的簡(jiǎn)單性質(zhì),先由兩點(diǎn)對(duì)稱,求出直線斜率,再由焦點(diǎn)坐標(biāo)求出直線方程,根據(jù)中點(diǎn)在直線上,即可求出結(jié)果,屬于??碱}型.16、2【解析】

運(yùn)用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)距離等于到準(zhǔn)線距離,然后求解結(jié)果.【詳解】拋物線的標(biāo)準(zhǔn)方程為:,則拋物線的準(zhǔn)線方程為,設(shè),,則,所以,則線段中點(diǎn)的縱坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的定義,由拋物線定義將點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線距離,需要熟練掌握定義,并能靈活運(yùn)用,本題較為基礎(chǔ).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)平行,證明見(jiàn)解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應(yīng)是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應(yīng)是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點(diǎn)睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎(chǔ)題.18、(Ⅰ)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ).【解析】

(Ⅰ)求出函數(shù)的定義域以及導(dǎo)數(shù),利用導(dǎo)數(shù)可求出該函數(shù)的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立;在時(shí),經(jīng)過(guò)分析得出,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)證明出在上恒成立,由此得出,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(Ⅰ)函數(shù)的定義域?yàn)?當(dāng)時(shí),.令,解得(舍去),.當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,所以,函數(shù)在上單調(diào)遞增.因此,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構(gòu)造函數(shù),,則,,,.又,在上恒成立.所以,函數(shù)在上單調(diào)遞增,當(dāng)時(shí),在上恒成立.(ii)若,構(gòu)造函數(shù),.,所以,函數(shù)在上單調(diào)遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當(dāng),即時(shí),函數(shù)在上單調(diào)遞減,,不合題意,,即.此時(shí)構(gòu)造函數(shù),.,,,,恒成立,所以,函數(shù)在上單調(diào)遞增,恒成立.綜上,實(shí)數(shù)的最大值為【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問(wèn)題,本題的難點(diǎn)在于不斷構(gòu)造新函數(shù)來(lái)求解,考查推理能力與運(yùn)算求解能力,屬于難題.19、(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見(jiàn)解析;(3).【解析】

試題分析:(1)對(duì)函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對(duì)分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當(dāng)時(shí),.解得.當(dāng)時(shí),解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當(dāng)時(shí),由題意,當(dāng)時(shí),恒成立.,∴當(dāng)時(shí),恒成立,單調(diào)遞減.又,∴當(dāng)時(shí),恒成立,即.∴對(duì)于,恒成立.(3)因?yàn)椋桑?)知,當(dāng)時(shí),恒成立,即對(duì)于,,不存在滿足條件的;當(dāng)時(shí),對(duì)于,,此時(shí).∴,即恒成立,不存在滿足條件的;當(dāng)時(shí),令,可知與符號(hào)相同,當(dāng)時(shí),,,單調(diào)遞減.∴當(dāng)時(shí),,即恒成立.綜上,的取值范圍為.點(diǎn)睛:本題主要考查導(dǎo)數(shù)和單調(diào)區(qū)間,導(dǎo)數(shù)與不等式的證明,導(dǎo)數(shù)與恒成立問(wèn)題的求解方法.第一問(wèn)求函數(shù)的單調(diào)區(qū)間,這是導(dǎo)數(shù)問(wèn)題的基本題型,也是基本功,先求定義域,然后求導(dǎo),要注意通分和因式分解.二、三兩問(wèn)一個(gè)是恒成立問(wèn)題,一個(gè)是存在性問(wèn)題,要注意取值是最大值還是最小值.20、(1)見(jiàn)解析(2)【解析】

(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時(shí)點(diǎn)的位置.建立空間直角坐標(biāo)系,通過(guò)平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫嫫矫媸钦叫?,所以平?因?yàn)槠矫妫?因?yàn)辄c(diǎn)在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點(diǎn)位于的中點(diǎn)時(shí),的面積最大,三棱錐的體積也最大.不妨設(shè),記中點(diǎn)為,以為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)見(jiàn)解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),,沒(méi)有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時(shí),等價(jià)于.設(shè)函數(shù),則.當(dāng)時(shí),,所以在單調(diào)遞減.而,故當(dāng)時(shí),,即.(2)設(shè)函數(shù).在只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)在只有一個(gè)零點(diǎn).(i)當(dāng)時(shí),,沒(méi)有零點(diǎn);(ii)當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒(méi)有零點(diǎn);②若,即,在只有一個(gè)零點(diǎn);③

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論