重慶八中2025屆高三第五次模擬考試數(shù)學試卷含解析_第1頁
重慶八中2025屆高三第五次模擬考試數(shù)學試卷含解析_第2頁
重慶八中2025屆高三第五次模擬考試數(shù)學試卷含解析_第3頁
重慶八中2025屆高三第五次模擬考試數(shù)學試卷含解析_第4頁
重慶八中2025屆高三第五次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

重慶八中2025屆高三第五次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,2.已知是平面內(nèi)互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.3.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.74.若集合,,則=()A. B. C. D.5.以,為直徑的圓的方程是A. B.C. D.6.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題7.已知集合.為自然數(shù)集,則下列表示不正確的是()A. B. C. D.8.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)9.等比數(shù)列的前項和為,若,,,,則()A. B. C. D.10.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.11.已知集合,集合,則A. B.或C. D.12.的二項展開式中,的系數(shù)是()A.70 B.-70 C.28 D.-28二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.14.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.15.設(shè)、分別為橢圓:的左、右兩個焦點,過作斜率為1的直線,交于、兩點,則________16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.18.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.19.(12分)已知,,,.(1)求的值;(2)求的值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.21.(12分)已知橢圓與x軸負半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.22.(10分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點,且滿足>1,求實數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數(shù)a的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,

設(shè),則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎(chǔ)題.2、C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設(shè),則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質(zhì).3、B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題4、C【解析】試題分析:化簡集合故選C.考點:集合的運算.5、A【解析】

設(shè)圓的標準方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標準方程為,由題意得圓心為,的中點,根據(jù)中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標準方程,建立方程組,屬于基礎(chǔ)題.6、B【解析】

由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當,即時,;當,即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于中檔題.7、D【解析】

集合.為自然數(shù)集,由此能求出結(jié)果.【詳解】解:集合.為自然數(shù)集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關(guān)系、集合與集合的關(guān)系等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.8、D【解析】

原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.9、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數(shù)列.10、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】

由可得,解得或,所以或,又,所以,故選C.12、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數(shù)是,故選A.考點:二項式定理的應(yīng)用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.14、【解析】

先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運算,將問題轉(zhuǎn)化為求球體表面一點到外心距離最大的問題,即可求得結(jié)果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設(shè)線段的中點為,故可得,故當取得最大值時,取得最大值.而當在同一個大圓上,且,點與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.15、【解析】

由橢圓的標準方程,求出焦點的坐標,寫出直線方程,與橢圓方程聯(lián)立,求出弦長,利用定義可得,進而求出。【詳解】由知,焦點,所以直線:,代入得,即,設(shè),,故由定義有,,所以?!军c睛】本題主要考查橢圓的定義、橢圓的簡單幾何性質(zhì)、以及直線與橢圓位置關(guān)系中弦長的求法,注意直線過焦點,位置特殊,采取合適的弦長公式,簡化運算。16、【解析】

根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2).【解析】

(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設(shè)平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.18、(1)12(2)【解析】

(1)根據(jù)焦距得焦點坐標,結(jié)合橢圓上的點的坐標,根據(jù)定義;(2)求出橢圓的標準方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當且僅當在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據(jù)直線與橢圓的交點關(guān)系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.19、(1)(2)【解析】

(1)先利用同角的三角函數(shù)關(guān)系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數(shù)值求值,考查三角函數(shù)的化簡,考查和角公式,二倍角公式,同角的三角函數(shù)關(guān)系的應(yīng)用,考查運算能力.20、(1)或;(2).【解析】

(1)利用絕對值的幾何意義,將不等式,轉(zhuǎn)化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價于或或,解得:或,∴不等式的解集為或.(2)因為-2在R上恒成立,而,所以,解得,所以實數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運算求解的能力,屬于中檔題.21、(1)(2)直線恒過定點,詳見解析【解析】

(1)依題意由橢圓的簡單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點的坐標,同理可求出點的坐標,根據(jù)的坐標可求出直線的方程,將其化簡成點斜式,即可求出定點坐標.【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當時,由有.∴,同理,又∴,當時,∴直線的方程為∴直線恒過定點,當時,此時也過定點..綜上:直線恒過定點.【點睛】本題主要考查利用橢圓的簡單性質(zhì)求橢圓的標準方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點問題的求法等,意在考查學生的邏輯推理能力和數(shù)學運算能力,屬于難題.22、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】

(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點與所研究的區(qū)間的大小關(guān)系來進行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構(gòu)造函數(shù)F(x)=h(x)-x在(0,+∞)上單調(diào)遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處理有解問題,先分離變量轉(zhuǎn)化為求對應(yīng)函數(shù)的最值,得到a≤,再利用導(dǎo)數(shù)求函數(shù)M(x)=的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進而確定函數(shù)最值.【詳解】(1)f′(x)=1-,x>0,令f′(x)=0,則x=1.當t≥1時,f(x)在[t,t+1]上單調(diào)遞增,f(x)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論