版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省冬季高中學高三第一次調研測試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.2.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當?shù)氐拇逦瘯?,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明3.已知函數(shù),當時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.4.設不等式組表示的平面區(qū)域為,若從圓:的內部隨機選取一點,則取自的概率為()A. B. C. D.5.設函數(shù),則使得成立的的取值范圍是().A. B.C. D.6.已知函數(shù)與的圖象有一個橫坐標為的交點,若函數(shù)的圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.7.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1478.設是虛數(shù)單位,則()A. B. C. D.9.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.10.數(shù)列的通項公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要11.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.12.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記等差數(shù)列和的前項和分別為和,若,則______.14.3張獎券分別標有特等獎、一等獎和二等獎.甲、乙兩人同時各抽取1張獎券,兩人都未抽得特等獎的概率是__________.15.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則的最小值為________.16.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標準方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,若.(1)求角的大?。唬?)若,為外一點,,求四邊形面積的最大值.18.(12分)已知函數(shù)(1)若對任意恒成立,求實數(shù)的取值范圍;(2)求證:19.(12分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.20.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.21.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)已知等差數(shù)列和等比數(shù)列的各項均為整數(shù),它們的前項和分別為,且,.(1)求數(shù)列,的通項公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項?若存在,求出所有滿足條件的的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.2、B【解析】
將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.3、C【解析】
求導分析函數(shù)在時的單調性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結果.【詳解】當時,,令,則;,則,∴函數(shù)在單調遞增,在單調遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質,屬于難題.4、B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對應的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎題.5、B【解析】
由奇偶性定義可判斷出為偶函數(shù),由單調性的性質可知在上單調遞增,由此知在上單調遞減,從而將所求不等式化為,解絕對值不等式求得結果.【詳解】由題意知:定義域為,,為偶函數(shù),當時,,在上單調遞增,在上單調遞減,在上單調遞增,則在上單調遞減,由得:,解得:或,的取值范圍為.故選:.【點睛】本題考查利用函數(shù)的單調性和奇偶性求解函數(shù)不等式的問題;奇偶性的作用是能夠確定對稱區(qū)間的單調性,單調性的作用是能夠將函數(shù)值的大小關系轉化為自變量的大小關系,進而化簡不等式.6、A【解析】
根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數(shù)圖象的縱坐標不變,橫坐標變?yōu)樵瓉淼谋?,則,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數(shù)圖象的性質、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉化思想和計算能力.7、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題8、A【解析】
利用復數(shù)的乘法運算可求得結果.【詳解】由復數(shù)的乘法法則得.故選:A.【點睛】本題考查復數(shù)的乘法運算,考查計算能力,屬于基礎題.9、C【解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結構求出其體積.10、A【解析】
根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關系可確定結果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調性求解參數(shù)范圍,屬于基礎題.11、B【解析】
①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.12、C【解析】
根據(jù)拋物線方程求得點的坐標,根據(jù)軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據(jù)拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
結合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.【點睛】本題考查了等差數(shù)列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.14、【解析】
利用排列組合公式進行計算,再利用古典概型公式求出不是特等獎的兩張的概率即可.【詳解】解:3張獎券分別標有特等獎、一等獎和二等獎,甲、乙兩人同時各抽取1張獎券,則兩人同時抽取兩張共有:種排法排除特等獎外兩人選兩張共有:種排法.故兩人都未抽得特等獎的概率是:故答案為:【點睛】本題主要考查古典概型的概率公式的應用,是基礎題.15、40【解析】
設等比數(shù)列的公比為,根據(jù),可得,因為,根據(jù)均值不等式,即可求得答案.【詳解】設等比數(shù)列的公比為,,,等比數(shù)列的各項為正數(shù),,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數(shù)列值的最值問題,解題關鍵是掌握等比數(shù)列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.16、【解析】
設以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質的合理運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當時,四邊形的面積取最大值,最大值為.【點睛】本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,屬于基礎題.18、(1);(2)見解析.【解析】
(1)將問題轉化為對任意恒成立,換元構造新函數(shù)即可得解;(2)結合(1)可得,令,求導后證明其導函數(shù)單調遞增,結合,即可得函數(shù)的單調區(qū)間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數(shù),又,當時,;當時,,在上是減函數(shù),在上是增函數(shù),,即,.【點睛】本題考查了利用導數(shù)解決恒成立問題,考查了利用導數(shù)證明不等式,考查了計算能力和轉化化歸思想,屬于中檔題.19、(1)..(2)【解析】
(1)先求解a,b,消去參數(shù),即得曲線的直角坐標方程;再求解,利用極坐標和直角坐標的互化公式,即得曲線的直角坐標方程;(2)由于,可設,,代入曲線直角坐標方程,可得的關系,轉化,可得解.【詳解】(1)將及對應的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標方程為.設圓的半徑為R,由題意,圓的極坐標方程為(或),將點代入,得,即,所以曲線的極坐標方程為,所以曲線的直角坐標方程為.(2)由于,故可設,代入曲線直角坐標方程,可得,,所以.【點睛】本題考查了極坐標和直角坐標,參數(shù)方程和一般方程的互化以及極坐標的幾何意義的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.20、(1);(2)見解析.【解析】
(1)根據(jù)題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達定理,由向量的坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 直筒模具設計課程設計
- 說明文課程設計
- 課程設計宿舍供電
- 課程設計壓縮包
- 2025年度科技園區(qū)物業(yè)房屋租賃管理服務協(xié)議3篇
- 2025年小學班主任班級工作總結范文(2篇)
- 2025年事業(yè)單位年檢工作年終總結模版(2篇)
- 通信原理課程設計實驗
- 二零二五年度數(shù)據(jù)中心電力需求響應服務合同2篇
- 二零二五年度建筑垃圾資源化處理質量合同3篇
- 基于ds18b20的溫度測量系統(tǒng)設計
- 軟件無線電原理與應用第3版 課件 第7-9章 無線電通信天線、軟件無線電在無線工程中的應用、軟件無線電的新發(fā)展-認知無線電
- 單病種質量管理總結分析辦公文檔
- 四級反射療法師習題庫
- 第三章海洋民俗生活與海洋信仰
- 病理生理學-華中科技大學中國大學mooc課后章節(jié)答案期末考試題庫2023年
- GB/T 20320-2023風能發(fā)電系統(tǒng)風力發(fā)電機組電氣特性測量和評估方法
- 高一生物-必修一-知識點復習提綱人教版
- 下套管危害識別和風險評估
- 湘教版高中美術鑒賞二單元第四課《人間生活》課件
- 西安交通大學少年班英語模擬試題1
評論
0/150
提交評論