下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Bioinformatics,2024,40(12),btae688
/10.1093/bioinformatics/btae688
AdvanceAccessPublicationDate:18November2024
ApplicationsNote
Dataandtextmining
Downloadedfrom
/bioinformatics/article/40/12/btae688/7903283bygueston26December2024
DeepDR:adeeplearninglibraryfordrugresponseprediction
ZhengxiangJiang
1
,
2
andPengyongLi
1
,
*
1SchoolofComputerScienceandTechnology,XidianUniversity,Xi’an,Shaanxi710126,China2SchoolofElectronicEngineering,XidianUniversity,Xi’an,Shaanxi710126,China
*Correspondingauthor.SchoolofComputerScienceandTechnology,XidianUniversity,266XinglongSectionofXifengRoad,Xi’an,Shaanxi710126,China.E-mail:lipengyong@
AssociateEditor:JonathanWren
Abstract
Summary:Accuratedrugresponsepredictioniscriticaltoadvancingprecisionmedicineanddrugdiscovery.Recentadvancesindeeplearning(DL)haveshownpromiseinpredictingdrugresponse;however,thelackofconvenienttoolstosupportsuchmodelinglimitstheirwidespreadapplication.Toaddressthis,weintroduceDeepDR,thefirstDLlibraryspecificallydevelopedfordrugresponseprediction.DeepDRsimplifiestheprocessbyautomatingdrugandcellfeaturization,modelconstruction,training,andinference,allachievablewithbriefprogramming.Thelibraryincorporatesthreetypesofdrugfeaturesalongwithninedrugencoders,fourtypesofcellfeaturesalongwithninecellencoders,andtwofusionmodules,enablingtheimplementationofupto135DLmodelsfordrugresponseprediction.WealsoexploredbenchmarkingperformancewithDeepDR,andtheoptimalmodelsareavailableonauser-friendlyvisualinterface.
Availabilityandimplementation:DeepDRcanbeinstalledfromPyPI
(/project/deepdr
).ThesourcecodeandexperimentaldataareavailableonGitHub
(/user15632/DeepDR
).
1Introduction
Precisionmedicineaimstodelivertailoredtherapiesforindividualtumorsatthemolecularlevel.Predictingdrugresponse(DR)
(Baptistaetal.2021
)remainsacomplexchallengewithinthisfield,reflectingtheintricaterelationshipbetweencancermulti-omicsinformationandtreatmenteffi-cacy.AccurateDRpredictioncouldsignificantlycontributetothedesignofpersonalizedtreatmentsandtheimprovementoftherapeuticoutcomes.Deeplearning(DL)
(LeCunetal.
2015
),amachinelearningapproach,hasdemonstratedcon-siderablepromiseinidentifyingcomplexpatternswithinbio-logicalinformation,includingcancermulti-omicsanddrugmolecules.ThispotentialhasspurreditsgrowingapplicationinDRmodeling,whereitisconsideredavaluabletoolforen-hancingunderstandingandpredictivecapabilities
(Lietal.
2021a
).However,despitethedevelopmentofnumerousmodelsinthisdomain,thereisstillalackofaunifiedandgeneralizedframeworkformodelconstructionandtraining.
CurrentDLapproachestoDRpredictiontypicallyuseastructuredmethodology,consistingofkeycomponentssuchasdrugmodeling,cellmodeling,andfusionmodulesforpredictiongeneration.Drugmodelingaimstoeffectivelyrepresentthechemicalpropertiesandpotentialbiologicaleffectsofdrugs.Thisisusuallyachievedbyrepresentingthemolecularstructureinformatsconducivetocomputationalprocessing,suchasmo-lecularfingerprints
(Lietal.2021a
),SMILES(SimplifiedMolecularInputLineEntrySystem)
(Liuetal.2019
),andmo-leculargraphs
(Liuetal.2020
),followedbylearningstructuralinformationthroughmodelslikeDeepNeuralNetworks
(DNNs)
(Chawlaetal.2022
),ConvolutionalNeuralNetworks(CNNs)
(Manicaetal.2019
),andGraphNeuralNetworks(GNNs)
(Zhangetal.2019
).Cellmodelinginvolvesprocessingbiologicaldatafromcells,includingtranscriptomics
(Chawla
etal.2022
),genomics
(Liuetal.2019
),andproteomics
(Matlocketal.2018
).DLtechniques,particularlyDNNs
(Chawlaetal.2022
),andCNNs
(Manicaetal.2019
),arelever-agedtolearnintricatepatternswithinthesefeatures.Thefusionmoduleintegratestheinsightsfromdrugandcellmodeling,us-ingDNNs
(Chawlaetal.2022
)orattentionmechanisms
(Sakellaropoulosetal.2019
),topredictdrugresponses.
DRpredictionmodelshaveabroadspectrumofapplica-tionsbeyondtheirprimaryfunction.Thesemodelscanbeutilizedtopredictthepharmacologicalpropertiesorbiologi-calactivityofmoleculesforvirtualscreeningandtoanalyzeomicsdataforcellclassification.TheversatilityofDLmod-elsrendersthemhighlyapplicableinarangeofcontexts.Forexample,clinicalresearchersinvestigatingtheimpactofge-neticvariationsondrugresponsesmightusethesemethodol-ogiestoanalyzegenomicdatafrompatientswithspecificdiseases.Similarly,computationalbiologistsaimingtodevelopadvancedpredictivemodelscanleveragediversedatasetstoexplorevariousmodelingarchitectures,therebyimprovingtheaccuracyofDRpredictions.However,imple-mentingthesemodelsrequiressubstantialexpertiseinDLandsignificantcodingefforts.Thetime-intensiveandcomplexityofadaptingtotheuniqueprogramminginterfa-cesofvariousopen-sourcetoolspresentnonnegligiblechal-lengerequiringresolution.
Received:9September2024;Revised:29October2024;EditorialDecision:11November2024;Accepted:13November2024。TheAuthor(s)2024.PublishedbyOxfordUniversityPress.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(
/licenses/by/4.0/
),whichpermitsunrestrictedreuse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
2JiangandLi
Toaddressthechallengesabove,weintroduceDeepDR(DeepDrugResponse),aPython-basedDLlibrarydesignedforDRprediction.DeepDRincorporatesthreetypesofdrugfeaturesalongwithninedrugencoders,fourtypesofcellfea-turesalongwithninecellencoders,aswellastwofusionmodules.Thiscomprehensiveframeworksupportstheimple-mentationof135models,cateringtoclinicalresearchersandcomputationalbiologistswithlimitedprogrammingback-grounds.Inaddition,wedemonstratetheutilizationofDeepDRbyimplementingandvalidatingmultiplemodelsontheintegrateddatasets,whichhelpstoidentifythemosteffec-tivemodeling.Tofurthersupportresearchers,wedevelopavisualinterfacethatenablesuserswithoutprogrammingex-pertisetoutilizetheoptimalmodels.
2DeepDRlibrary
2.1Datasetframework
2.1.1Featurization
Drugfeaturization.DeepDRoffersthreemodalitiesofdrugfeatures:FP(MolecularFingerprints)(
Lietal.2021a
),SMILES(SimplifiedMolecularInputLineEntrySystem)
(Liu
etal.2019
),andmoleculargraphs
(Liuetal.2020
)(see
Fig.1B
).FParethebinaryvectorrepresentationsofmole-cules
(RogersandHahn2010
).SMILESprovidesaspecifica-tionforencodingmoleculesasstrings
(Weininger1988
).Graphsrepresentmoleculesbyabstractingatomsasnodesandchemicalbondsasedges
(Kearnesetal.2016
).Detailsareavailablein
SupplementaryTextS1
.
A
Cellfeaturization.DeepDRintegratesfourmodalitiesofcellfeatures:expressionprofile(EXP)
(Manicaetal.2019
),pathwayenrichmentscore(PES)
(Chawlaetal.2022
),muta-tionstatus(MUT)
(Liuetal.2019
),andcopynumbervaria-tion(CNV)
(Liuetal.2019
)(see
Fig.1B
).EXPreflectsthequantitativeexpressionlevelsofgenes
(Heller2002
).PESilluminatesthecombinatorialimplicationsamonggeneswithinspecificpathways
(Hnzelmannetal.2013
).MUTreferstothegeneticalterationsorvariationswithinspecificgenes(
Stensonetal.2017
).CNVrepresentsgenomicdele-tionsandduplicationsobservableatthesubmicroscopicscale
(Freemanetal.2006
).Giventhecomplexityofprocessinghigh-dimensionaldata,DeepDRprovidesfeaturesscreenedongenesubsetsinadditiontogenome-widefeatures
(Jiaetal.
2021
).Detailsareprovidedin
SupplementaryTextS2
.
2.1.2Datasetandsplitting
Downloadedfrom
/bioinformatics/article/40/12/btae688/7903283bygueston26December2024
DeepDRintegratestheCancerCellLineEncyclopedia(CCLE)
(Barretinaetal.2019
)andGenomicsofDrugSensitivityinCancer(GDSC)
(Yangetal.2016
),andallowsuserstousetheirowndatasets(see
SupplementaryTextsS3
andS4
).Themeasurementofdrugresponseisquantifiedus-ingseveralparameters:thenaturallogarithm-transformedIC50(HalfMaximalInhibitoryConcentration),AUC(AreaUndertheDose-responseCurve),andActArea(ActivityArea).Tosupportthevalidation,DeepDRincorporatesfourdatasetsplittingstrategies:commonrandom,leave-cell-out,leave-drug-out,andstrictsplit
(Manicaetal.2019
)(see
Fig.1C
).Theleave-cell-outsplitisdesignedtoeliminateanyoverlapofcellsbetweenthetraining,validation,andtestsets.Thisapproachaimstoreplicatethescenariowherethedrugresponseofnewcellstoexistingdrugsisevaluated.Similarly,theleave-drug-outsplitseekstoemulatetheresponseofknowncellstonoveldrugs,whilethestrictsplitisdesignedtosimulatetheresponseofnovelcellstonoveldrugs.
2.2ModelforDRprediction
DeeplearningDRpredictionmodelcanbeformulatedasencodingfordrugsandcellsandfusionofdrugandcellinfor-mation.Inlinewiththisframework,DeepDRhasdevelopedthreeintegralmodules:thedrugencoder,cellencoder,andfusionmodule.Thesecomponentsaredesignedtoprovidethefoundationfortheflexibleconstructionofpredictivemodelsofdrugresponse.Thefeaturesofdrugsandcellsareintroducedintotheencoder.Subsequently,theencodedinfor-mationisintegratedwithinthefusionmoduletogeneratethepredicteddrugresponse(see
Fig.1A
).
2.2.1Drugencoder
DeepDRintegratesnineencoderstailoredtoprocessdrugmoleculardata(see
Fig.1B
).Theseencodersincludethe
Drugencoder
Fusionmodule
Drugfeaturization
Cellencoder
IC50/AUC/ActArea
Valid
Test
Train
Cellfeaturization
B
C
rization
EXPPES
MUT/CNV
A1
A2
B3
C3
A1
A2
B3
C3
A1
A2
B3
C3
A1
A2
B3
C3
Leavecellout
Leavedrugout
Strict
Random
1.Drugfeaturization2.Cellfeatu
FP
SMILES
Graph
C1=C(C(=O)NC(=O)N1)F
FH
N
()
ONO
H
5.Fusionmodule
CNN
DNN
3.Drugencoder
GNNs
DNN
feature
Drug
GRU/LSTM
MHA
CNN
DAE
4.Cellencoder
Cellfeature
DNN
D
01fromDeepDRimportData,Model,CellEncoder,DrugEncoder,FusionModule
02data=Data.DrData(Data.DrRead.PairDef('CCLE','ActArea'),'EXP','Graph').clean()
03train_data,val_data,_=data.split('cell_out',fold=1,ratio=[0.8,0.2,0.0],seed=1)
04train_loader=Data.DrDataLoader(Data.DrDataset(train_data[0]),batch_size=64,shuffle=True)
05val_loader=Data.DrDataLoader(Data.DrDataset(val_data[0]),batch_size=64,shuffle=False)
06model=Model.DrModel(CellEncoder.DNN(6163,100),DrugEncoder.MPG(),FusionModule.DNN(100,768))
07result=Model.Train(model,epochs=100,lr=1e-4,train_loader=train_loader,val_loader=val_loader)
08data.pair_ls=[['CAL120','5-Fluorouracil'],['CAL51','Afuresertib']]
09result=Model.Predict(model=result[0],data=data)
E
Figure1.OverviewofDeepDRlibrary.(A)Thedrugandcellareprocessedthroughfeaturizationandencoder,andthenthedrugresponseisdecoded
usingthefusionmodule.(B)DeepDRprovidesdrugandcellfeaturization,encoder,andfusionmodule.(C)DeepDRprovidessplittingmethods,includingrandomsplit,leave-cell-outsplit,leave-drug-outsplit,andstrictsplit.(D)ProgrammingframeworkofDeepDRfordatasetloading,modelimplementation,training,andinference.(E)Leave-cell-outperformanceontheCCLEdataset.Usingsubsetmeansusingfeaturesscreenedonthegenesubset,rather
thangenome-widefeatures.Thevaluesinparenthesesarestandarddeviations.
Drugresponsepredictionlibrary3
DNN(DeepNeuralNetwork)leveragingmolecularfinger-prints,andarchitecturessuchasCNN(ConvolutionalNeuralNetwork)
(Liuetal.2019
),GRU(GatedRecurrentUnit)
(DeyandSalem2017
),andLSTM(LongShort-TermMemory)
(GravesandGraves2012
)thatarebasedonSMILESrepresentations.Inaddition,itfeaturesGCN(GraphConvolutionalNetwork)
(Zhangetal.2019
),GAT(GraphAttentionNetwork)
(Velickovicetal.2017
),MPG
(Lietal.
2021c
),AttentiveFP
(Xiongetal.2020
),andTrimNet(
Li
etal.2021b
)foranalyzingmoleculargraphs.TheDNNmod-uleencodesthedrugasasingularvector,whiletheotherarchitecturesproduceasequenceofvectors,witheachvectorcorrespondingtoaSMILEScharacteroranatomwithinthemoleculargraph.TheencodersbasedonSMILESandmolec-ulargraphsareintegratedwithanembeddinglayer,whichisinstrumentalingeneratingdensevectors.
2.2.2Cellencoder
Forcellmodeling,DeepDRintegratesnineencoders:DNNbasedonEXP,PES,MUT,orCNV
(Lietal.2021a
);CNNbasedonEXP,PES,MUT,orCNV
(Manicaetal.2019
);andDAE(DenoisingAutoencoder)basedonEXP
(Chenetal.
2022
)(see
Fig.1B
).TheDNNandCNNmodulesaredesignedtocompressthefeaturesofcellsintolow-dimensionalvectors,thusfacilitatingamorecompactandefficientrepresentationofthedata.TheDAE,ontheotherhand,isspecificallypre-trainedtofocusonminimizingthereconstructionlossofcellfeatures,utilizingthehiddenvectorsastheencodingvectorsforthecells.
2.2.3Fusionmodule
Intermsofintegratingdrugandcellinformation,DeepDRprovidestwomethods:aDNNbasedandanMHA(Multi-headAttention)-basedframework(see
Fig.1B
)
(Vaswani
etal.2017
,
Manicaetal.2019
).Thecellencoderisdesignedtoencodethecellasasinglevector,whilethedrugencoderencodesthedrugasasinglevectororseriesofvectors.WithintheDNN-basedframework,aseriesofvectorscanbecondensedintoasinglevectorthroughtechniquessuchasglobalaveragingormaximumpooling.Incontrast,theMHA-basedapproachcalculatesasfollows:
,、
Attention(Q;K;V)=softmaxV(1)
wherethecellvectorisactingasQ.Thedkisthedimensionofvectorsrepresentingthedrug,whichareconsideredasthematricesKandV.Thisleveragestheattentionmechanismtoeffectivelyextracttheinformationoncelldruginteractionsintoonevector.Botharchitecturesshareacommonprocesswherethevectorsforthedrugandcellareeitheraddedorconcatenated,followedbytheirintroductionintoasucces-sionoflinearlayersforthepredictionofdrugresponses.
3ProgrammingframeworkofDeepDR
DeepDRstreamlinestheDRpredictionworkflowintosevenmodularcomponents,eachthoughtfullystructuredasaclassorfunctiontoenhanceconvenience(see
Fig.1D
):(i)UseData.DrDatatoconstructdrugresponsedata,includingcell-drugpairs,correspondingdrugresponses,cellanddrugfeatures.(ii)Use.clean()and.split()tocleanandsplitdrugresponsedata.(iii)InstantiatethedatasetusingData.
DrDataset.(iv)UseData.DrDataLoadertoloadthedatasetformodeltrainingorvalidation.(v)ThenModel.DrModelisutilizedtoconstructtheDRpredictionmodel.(vi)ThemodelistrainedusingModel.Train,whichconcurrentlyevaluatesperformancetoensureefficacy.(vii)Finally,Model.Predictisdeployedtoforecastdrugresponses,leveragingtheknowl-edgegainedfromthetrainedmodel.DeepDRoffersthreekeymetrics:MeanSquaredError(MSE),R-squared(R2),andPearsonCorrelationCoefficient(PCC).
Downloadedfrom
/bioinformatics/article/40/12/btae688/7903283bygueston26December2024
4EstablishingbenchmarksviaDeepDR
Tobenchmarkdrugresponseprediction,weimplementedandevaluated16models,includingtCNNS
(Liuetal.2019
),Precily
(Chawlaetal.2022
),andDeepDSC
(Lietal.2021a
),alongwithother13novelmodels,onCCLEandGDSC2datasets.Weusedleave-cell-outandleave-drug-outsplittingstrategiestosplitthedatasetsintotraining,validation,andtestsets(8:1:1)usingthreerandomseeds.Eachmodelwastrainedfor100epochsusingtheMSElossfunction,withthelearningratetunedfrom{0.001,0.0001,0.00001}.Were-portthemeanandstandarddeviationofmodelperformanceacrossthethreeseeds.Ourfindings
(Fig.1E
and
SupplementaryTablesS1–S3
)highlightthreekeyobserva-tions:(i)optimalrepresentationsaregraphsfordrugsandex-pressionprofilesforcells.(ii)Predictingtheresponseofnoveldrugsisamoresignificantchallenge.(iii)Pre-trainingtechni-quesfacilitateaccuratepredictionofdrugresponse.Furtheranalysisandimplementationdetailscanbefoundin
SupplementaryTextsS5andS6
and
SupplementaryTables
S4–S7
.TheoptimalmodelsdevelopedwithDeepDRareavail-ableonavisualinterfaceat
https://huggingface.co/spaces/
user15632/DeepDR
.
Authorcontributions
ZhengxiangJiang(Methodology,Datacuration,Visualization,Writing—originaldraft,Writing—review&editing),PengyongLi(Conceptualization,Supervision,Investigation,Methodology,Writing—review&editing)
Supplementarydata
Supplementarydata
areavailableatBioinformaticsonline.Conflictofinterest:Nonedeclared.
Funding
ThisworkwassupportedinpartbytheNationalNaturalScienceFoundationofChina[62202353andU22A2037]andtheFundamentalResearchFundsfortheCentralUniversities.
Dataavailability
ThesourcecodeandexperimentaldataareavailableonGitHub:
/user15632/DeepDR
.InstallationofDeepDRinvolvessimplytyping“pipinstalldeepdr.”
References
BaptistaD,FerreiraPG,RochaM.Deeplearningfordrugresponsepre-
dictionincancer.BriefBioinform2021
;22:360–79.
4JiangandLi
BarretinaJ,CaponigroG,StranskyNetal.Addendum:thecancercell
lineencyclopediaenablespredictivemodellingofanticancerdrug
sensitivity.Nature2019
;565:E5–6.
ChawlaS,RockstrohA,LehmanMetal.Geneexpressionbasedinfer-
enceofcancerdrugsensitivity.NatCommun2022
;13:5680.
ChenJ,WangX,MaAetal.Deeptransferlearningofcancerdrug
responsesbyintegratingbulkandsingle-cellRNA-seqdata.Nat
Commun2022
;13:6494.
DeyR,SalemFM.Gate-variantsofgatedrecurrentunit(GRU)
neuralnetworks.In:2017IEEE60thInternationalMidwestSymposium
onCircuitsandSystems(MWSCAS).IEEE,2017
,1597–600.
FreemanJL,PerryGH,FeukLetal.Copynumbervariation:new
insightsingenomediversity.GenomeRes2006
;16:949–61.
GravesA,GravesA.LongShort-TermMemory.SupervisedSequence
LabellingwithRecurrentNeuralNetworks.NewYork,USA:
Springer,2012
,37–45.
HnzelmannS,CasteloR,GuinneyJ.GSVA:genesetvariationanalysis
formicroarrayandRNA-seqdata.BMCBioinformatics2013
;14:7–15.
HellerMJ.DNAmicroarraytechnology:devices,systems,andapplica-
tions.AnnuRevBiomedEng2002
;4:129–53.
JiaP,HuR,PeiGetal.Deepgenerativeneuralnetworkforaccurate
drugresponseimputation.NatCommun2021
;12:1740.
KearnesS,McCloskeyK,BerndlMetal.Moleculargraphconvolu-
tions:movingbeyondfingerprints.JComputAidedMolDes2016
;30:595–608.
LeCunY,BengioY,HintonG.Deeplearning.Nature2015
;521:436–44.
LiM,WangY,ZhengRetal.Deepdsc:adeeplearningmethodtopre-
dictdrugsensitivityofcancercelllines.IEEE/ACMTransComput
BiolBioinform2021a
;18:575–82.
LiP,LiY,HsiehC-Yetal.Trimnet:learningmolecularrepresentation
fromtripletmessagesforbiomedicine.BriefBioinform2021b
;22:bbaa266.
LiP,WangJ,QiaoYetal.Aneffectiveself-supervisedframeworkfor
learningexpressivemolecularglobalrepresentationstodrugdiscov-
ery.BriefBioinform2021c
;22:bbab109.
LiuP,LiH,LiSetal.Improvingpredictionofphenotypicdrugresponse
oncancercelllinesusingdeepconvolutionalnetwork.BMC
Bioinformatics2019
;20:408.
LiuQ,HuZ,Jiang
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 全新三輪車銷售合同3篇
- 借款合同的解除協(xié)議爭(zhēng)議解決機(jī)構(gòu)3篇
- 劇院舞臺(tái)互動(dòng)顯示屏采購(gòu)協(xié)議2篇
- 商業(yè)贊助合同模板3篇
- 只投資不參與經(jīng)營(yíng)協(xié)議書(shū)范本3篇
- 勞務(wù)合同與勞動(dòng)合同區(qū)別與合規(guī)2篇
- 琴行兼職老師合同范例
- 武漢商貿(mào)職業(yè)學(xué)院《社交禮儀》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢晴川學(xué)院《數(shù)學(xué)物理方程Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 武漢輕工大學(xué)《火電廠煙氣凈化Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- X62W萬(wàn)能銑床電氣控制
- 常用普通螺紋加工的中徑和頂徑極限偏差快速查詢表
- 職工配偶未就業(yè)承諾書(shū)
- 質(zhì)量認(rèn)證基礎(chǔ)知識(shí)(共218頁(yè)).ppt
- 斜皮帶機(jī)皮帶跑偏調(diào)整方法ppt課件
- 《光學(xué)教程》[姚啟鈞]課后習(xí)題解答
- 供應(yīng)室不良事件
- ACOG指南:妊娠期高血壓疾病指南(專家解讀)
- 服務(wù)外包公司評(píng)價(jià)表(共1頁(yè))
- 一年級(jí)數(shù)學(xué)月考試卷分析
- 泵用機(jī)械密封沖洗方案及操作方法
評(píng)論
0/150
提交評(píng)論