四川民族學(xué)院《機(jī)器學(xué)習(xí)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
四川民族學(xué)院《機(jī)器學(xué)習(xí)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
四川民族學(xué)院《機(jī)器學(xué)習(xí)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
四川民族學(xué)院《機(jī)器學(xué)習(xí)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
四川民族學(xué)院《機(jī)器學(xué)習(xí)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線(xiàn)第1頁(yè),共3頁(yè)四川民族學(xué)院

《機(jī)器學(xué)習(xí)雙語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、某研究需要對(duì)生物信息數(shù)據(jù)進(jìn)行分析,例如基因序列數(shù)據(jù)。以下哪種機(jī)器學(xué)習(xí)方法在處理生物信息學(xué)問(wèn)題中經(jīng)常被應(yīng)用?()A.隱馬爾可夫模型B.條件隨機(jī)場(chǎng)C.深度學(xué)習(xí)模型D.以上方法都常用2、機(jī)器學(xué)習(xí)在圖像識(shí)別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類(lèi)、目標(biāo)檢測(cè)、圖像分割等任務(wù)。常見(jiàn)的圖像識(shí)別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過(guò)卷積層和池化層自動(dòng)學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識(shí)別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識(shí)別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識(shí)別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對(duì)抗攻擊等3、假設(shè)正在進(jìn)行一個(gè)圖像生成任務(wù),例如生成逼真的人臉圖像。以下哪種生成模型在圖像生成領(lǐng)域取得了顯著成果?()A.變分自編碼器(VAE)B.生成對(duì)抗網(wǎng)絡(luò)(GAN)C.自回歸模型D.以上模型都常用于圖像生成4、在一個(gè)分類(lèi)問(wèn)題中,如果數(shù)據(jù)集中存在多個(gè)類(lèi)別,且類(lèi)別之間存在層次結(jié)構(gòu),以下哪種方法可以考慮這種層次結(jié)構(gòu)?()A.多分類(lèi)邏輯回歸B.決策樹(shù)C.層次分類(lèi)算法D.支持向量機(jī)5、在一個(gè)分類(lèi)問(wèn)題中,如果類(lèi)別之間的邊界不清晰,以下哪種算法可能能夠更好地處理這種情況?()A.支持向量機(jī)B.決策樹(shù)C.樸素貝葉斯D.隨機(jī)森林6、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類(lèi)的離散化D.基于決策樹(shù)的離散化7、在一個(gè)情感分析任務(wù)中,需要同時(shí)考慮文本的語(yǔ)義和語(yǔ)法信息。以下哪種模型結(jié)構(gòu)可能是最有幫助的?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN),能夠提取局部特征,但對(duì)序列信息處理較弱B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),擅長(zhǎng)處理序列數(shù)據(jù),但長(zhǎng)期依賴(lài)問(wèn)題較嚴(yán)重C.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)(LSTM),改進(jìn)了RNN的長(zhǎng)期記憶能力,但計(jì)算復(fù)雜度較高D.結(jié)合CNN和LSTM的混合模型,充分利用兩者的優(yōu)勢(shì)8、假設(shè)在一個(gè)醫(yī)療診斷的場(chǎng)景中,需要通過(guò)機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)患者是否患有某種疾病。收集了大量患者的生理指標(biāo)、病史和生活習(xí)慣等數(shù)據(jù)。在選擇算法時(shí),需要考慮模型的準(zhǔn)確性、可解釋性以及對(duì)新數(shù)據(jù)的泛化能力。以下哪種算法可能是最適合的?()A.決策樹(shù)算法,因?yàn)樗軌蚯逦卣故緵Q策過(guò)程,具有較好的可解釋性,但可能在復(fù)雜數(shù)據(jù)上的準(zhǔn)確性有限B.支持向量機(jī)算法,對(duì)高維數(shù)據(jù)有較好的處理能力,準(zhǔn)確性較高,但模型解釋相對(duì)困難C.隨機(jī)森林算法,由多個(gè)決策樹(shù)組成,準(zhǔn)確性較高且具有一定的抗噪能力,但可解釋性一般D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)算法,能夠自動(dòng)提取特征,準(zhǔn)確性可能很高,但模型非常復(fù)雜,難以解釋9、考慮一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有明顯的季節(jié)性特征。以下哪種方法可以處理這種季節(jié)性?()A.在模型中添加季節(jié)性項(xiàng)B.使用季節(jié)性差分C.采用季節(jié)性自回歸移動(dòng)平均(SARIMA)模型D.以上都可以10、某機(jī)器學(xué)習(xí)模型在訓(xùn)練時(shí)出現(xiàn)了過(guò)擬合現(xiàn)象,除了正則化,以下哪種方法也可以嘗試用于緩解過(guò)擬合?()A.增加訓(xùn)練數(shù)據(jù)B.減少特征數(shù)量C.早停法D.以上方法都可以11、在進(jìn)行機(jī)器學(xué)習(xí)模型評(píng)估時(shí),我們經(jīng)常使用混淆矩陣來(lái)分析模型的性能。假設(shè)一個(gè)二分類(lèi)問(wèn)題的混淆矩陣如下:()預(yù)測(cè)為正類(lèi)預(yù)測(cè)為負(fù)類(lèi)實(shí)際為正類(lèi)8020實(shí)際為負(fù)類(lèi)1090那么該模型的準(zhǔn)確率是多少()A.80%B.90%C.70%D.85%12、假設(shè)正在開(kāi)發(fā)一個(gè)用于情感分析的深度學(xué)習(xí)模型,需要對(duì)模型進(jìn)行優(yōu)化。以下哪種優(yōu)化算法在深度學(xué)習(xí)中被廣泛使用?()A.隨機(jī)梯度下降(SGD)B.自適應(yīng)矩估計(jì)(Adam)C.牛頓法D.共軛梯度法13、假設(shè)要對(duì)一個(gè)大型數(shù)據(jù)集進(jìn)行無(wú)監(jiān)督學(xué)習(xí),以發(fā)現(xiàn)潛在的模式和結(jié)構(gòu)。以下哪種方法可能是首選?()A.自編碼器(Autoencoder),通過(guò)重構(gòu)輸入數(shù)據(jù)學(xué)習(xí)特征,但可能無(wú)法發(fā)現(xiàn)復(fù)雜模式B.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過(guò)對(duì)抗訓(xùn)練生成新數(shù)據(jù),但訓(xùn)練不穩(wěn)定C.深度信念網(wǎng)絡(luò)(DBN),能夠提取高層特征,但訓(xùn)練難度較大D.以上方法都可以嘗試,根據(jù)數(shù)據(jù)特點(diǎn)和任務(wù)需求選擇14、假設(shè)正在構(gòu)建一個(gè)語(yǔ)音識(shí)別系統(tǒng),需要對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行預(yù)處理和特征提取。語(yǔ)音信號(hào)具有時(shí)變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對(duì)語(yǔ)音信號(hào)進(jìn)行分幀和加窗C.將語(yǔ)音信號(hào)轉(zhuǎn)換為頻域表示D.對(duì)語(yǔ)音信號(hào)進(jìn)行壓縮編碼,減少數(shù)據(jù)量15、某研究團(tuán)隊(duì)正在開(kāi)發(fā)一個(gè)用于醫(yī)療診斷的機(jī)器學(xué)習(xí)系統(tǒng),需要對(duì)疾病進(jìn)行預(yù)測(cè)。由于醫(yī)療數(shù)據(jù)的敏感性和重要性,模型的可解釋性至關(guān)重要。以下哪種模型或方法在提供可解釋性方面具有優(yōu)勢(shì)?()A.深度學(xué)習(xí)模型B.決策樹(shù)C.集成學(xué)習(xí)模型D.強(qiáng)化學(xué)習(xí)模型16、在處理不平衡數(shù)據(jù)集時(shí),以下關(guān)于解決數(shù)據(jù)不平衡問(wèn)題的方法,哪一項(xiàng)是不正確的?()A.過(guò)采樣方法通過(guò)增加少數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集B.欠采樣方法通過(guò)減少多數(shù)類(lèi)樣本的數(shù)量來(lái)平衡數(shù)據(jù)集C.合成少數(shù)類(lèi)過(guò)采樣技術(shù)(SMOTE)通過(guò)合成新的少數(shù)類(lèi)樣本來(lái)平衡數(shù)據(jù)集D.數(shù)據(jù)不平衡對(duì)模型性能沒(méi)有影響,不需要采取任何措施來(lái)處理17、假設(shè)正在開(kāi)發(fā)一個(gè)自動(dòng)駕駛系統(tǒng),其中一個(gè)關(guān)鍵任務(wù)是目標(biāo)檢測(cè),例如識(shí)別道路上的行人、車(chē)輛和障礙物。在選擇目標(biāo)檢測(cè)算法時(shí),需要考慮算法的準(zhǔn)確性、實(shí)時(shí)性和對(duì)不同環(huán)境的適應(yīng)性。以下哪種目標(biāo)檢測(cè)算法在實(shí)時(shí)性要求較高的場(chǎng)景中可能表現(xiàn)較好?()A.FasterR-CNN,具有較高的檢測(cè)精度B.YOLO(YouOnlyLookOnce),能夠?qū)崿F(xiàn)快速檢測(cè)C.SSD(SingleShotMultiBoxDetector),在精度和速度之間取得平衡D.以上算法都不適合實(shí)時(shí)應(yīng)用18、假設(shè)我們要使用機(jī)器學(xué)習(xí)算法來(lái)預(yù)測(cè)股票價(jià)格的走勢(shì)。以下哪種數(shù)據(jù)特征可能對(duì)預(yù)測(cè)結(jié)果幫助較?。ǎ〢.公司的財(cái)務(wù)報(bào)表數(shù)據(jù)B.社交媒體上關(guān)于該股票的討論熱度C.股票代碼D.宏觀經(jīng)濟(jì)指標(biāo)19、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類(lèi)問(wèn)題,我們需要選擇合適的算法來(lái)提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線(xiàn)性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹(shù)C.支持向量機(jī)D.樸素貝葉斯20、在一個(gè)客戶(hù)流失預(yù)測(cè)的問(wèn)題中,需要根據(jù)客戶(hù)的消費(fèi)行為、服務(wù)使用情況等數(shù)據(jù)來(lái)提前預(yù)測(cè)哪些客戶(hù)可能會(huì)流失。以下哪種特征工程方法可能是最有幫助的?()A.手動(dòng)選擇和構(gòu)建與客戶(hù)流失相關(guān)的特征,如消費(fèi)頻率、消費(fèi)金額的變化等,但可能忽略一些潛在的重要特征B.利用自動(dòng)特征選擇算法,如基于相關(guān)性或基于樹(shù)模型的特征重要性評(píng)估,但可能受到數(shù)據(jù)噪聲的影響C.進(jìn)行特征變換,如對(duì)數(shù)變換、標(biāo)準(zhǔn)化等,以改善數(shù)據(jù)分布和模型性能,但可能丟失原始數(shù)據(jù)的某些信息D.以上方法結(jié)合使用,綜合考慮數(shù)據(jù)特點(diǎn)和模型需求21、在機(jī)器學(xué)習(xí)中,偏差-方差權(quán)衡(Bias-VarianceTradeoff)描述的是()A.模型的復(fù)雜度與性能的關(guān)系B.訓(xùn)練誤差與測(cè)試誤差的關(guān)系C.過(guò)擬合與欠擬合的關(guān)系D.以上都是22、在進(jìn)行模型壓縮時(shí),以下關(guān)于模型壓縮方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.剪枝是指刪除模型中不重要的權(quán)重或神經(jīng)元,減少模型的參數(shù)量B.量化是將模型的權(quán)重進(jìn)行低精度表示,如從32位浮點(diǎn)數(shù)轉(zhuǎn)換為8位整數(shù)C.知識(shí)蒸餾是將復(fù)雜模型的知識(shí)轉(zhuǎn)移到一個(gè)較小的模型中,實(shí)現(xiàn)模型壓縮D.模型壓縮會(huì)導(dǎo)致模型性能?chē)?yán)重下降,因此在實(shí)際應(yīng)用中應(yīng)盡量避免使用23、在強(qiáng)化學(xué)習(xí)中,智能體通過(guò)與環(huán)境交互來(lái)學(xué)習(xí)最優(yōu)策略。如果智能體在某個(gè)狀態(tài)下采取的行動(dòng)總是導(dǎo)致低獎(jiǎng)勵(lì),它應(yīng)該()A.繼續(xù)采取相同的行動(dòng),希望情況會(huì)改善B.隨機(jī)選擇其他行動(dòng)C.根據(jù)策略網(wǎng)絡(luò)的輸出選擇行動(dòng)D.調(diào)整策略以避免采取該行動(dòng)24、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線(xiàn)性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以25、假設(shè)要預(yù)測(cè)一個(gè)時(shí)間序列數(shù)據(jù)中的突然變化點(diǎn),以下哪種方法可能是最合適的?()A.滑動(dòng)窗口分析,通過(guò)比較相鄰窗口的數(shù)據(jù)差異來(lái)檢測(cè)變化,但窗口大小選擇困難B.基于統(tǒng)計(jì)的假設(shè)檢驗(yàn),如t檢驗(yàn)或方差分析,但對(duì)數(shù)據(jù)分布有要求C.變點(diǎn)檢測(cè)算法,如CUSUM或Pettitt檢驗(yàn),專(zhuān)門(mén)用于檢測(cè)變化點(diǎn),但可能對(duì)噪聲敏感D.深度學(xué)習(xí)中的異常檢測(cè)模型,能夠自動(dòng)學(xué)習(xí)變化模式,但需要大量數(shù)據(jù)訓(xùn)練26、在進(jìn)行深度學(xué)習(xí)中的圖像生成任務(wù)時(shí),生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種常用的模型。假設(shè)我們要生成逼真的人臉圖像。以下關(guān)于GAN的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,它們通過(guò)相互對(duì)抗來(lái)提高生成圖像的質(zhì)量B.生成器的目標(biāo)是生成盡可能逼真的圖像,以欺騙判別器C.判別器的任務(wù)是區(qū)分輸入的圖像是真實(shí)的還是由生成器生成的D.GAN的訓(xùn)練過(guò)程穩(wěn)定,不容易出現(xiàn)模式崩潰等問(wèn)題27、假設(shè)正在開(kāi)發(fā)一個(gè)用于圖像分割的機(jī)器學(xué)習(xí)模型。以下哪種損失函數(shù)通常用于評(píng)估圖像分割的效果?()A.交叉熵?fù)p失B.均方誤差損失C.Dice損失D.以上損失函數(shù)都可能使用28、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以29、在一個(gè)推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性?xún)?yōu)化,選擇不同類(lèi)型的物品進(jìn)行推薦,但可能忽略用戶(hù)偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶(hù)反饋動(dòng)態(tài)調(diào)整30、在進(jìn)行特征工程時(shí),如果特征之間存在共線(xiàn)性,即一個(gè)特征可以由其他特征線(xiàn)性表示,以下哪種方法可以處理共線(xiàn)性?()A.去除相關(guān)特征B.對(duì)特征進(jìn)行主成分分析C.對(duì)特征進(jìn)行標(biāo)準(zhǔn)化D.以上都可以二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)探討在醫(yī)療影像配準(zhǔn)中,機(jī)器學(xué)習(xí)的應(yīng)用和精度評(píng)估方法。分析配準(zhǔn)過(guò)程中的變形模型和優(yōu)化算法。2、(本題5分)機(jī)器學(xué)習(xí)中的模型調(diào)優(yōu)方法有哪些?結(jié)合具體案例,分析如何選擇合適的參數(shù)以提高模型性能。3、(本題5分)論述機(jī)器學(xué)習(xí)在礦業(yè)中的礦產(chǎn)資源勘探中的應(yīng)用,分析其對(duì)礦業(yè)可持續(xù)發(fā)展的意義。4、(本題5分)論述機(jī)器學(xué)習(xí)在金融市場(chǎng)預(yù)測(cè)中的挑戰(zhàn)與機(jī)遇。金融市場(chǎng)具有復(fù)雜性和不確定性,機(jī)器學(xué)習(xí)在其中面臨挑戰(zhàn),但也帶來(lái)了機(jī)遇。分析挑戰(zhàn)和機(jī)遇,并討論相應(yīng)的方法和策略。5、(本題5分)論述機(jī)器學(xué)習(xí)在能源領(lǐng)域的應(yīng)用,如能源消耗預(yù)測(cè)、智能電網(wǎng)等。探討數(shù)據(jù)質(zhì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論