版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山西省忻州高級中學(xué)高三下第一次測試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.2.設(shè)函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,3.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.194.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.5.閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.6.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.7.蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率()A. B.C. D.8.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.9.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,10.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.11.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中含的系數(shù)為__________.(用數(shù)字填寫答案)14.若一組樣本數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則該組樣本數(shù)據(jù)的方差為______.15.已知函數(shù)的最小值為2,則_________.16.在△ABC中,()⊥(>1),若角A的最大值為,則實數(shù)的值是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,設(shè),過點的直線與圓相切,且與拋物線相交于兩點.(1)當(dāng)在區(qū)間上變動時,求中點的軌跡;(2)設(shè)拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.19.(12分)已知函數(shù),函數(shù),其中,是的一個極值點,且.(1)討論的單調(diào)性(2)求實數(shù)和a的值(3)證明20.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.21.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點,以為折痕將折起,使點到達(dá)點位置(平面).(1)若為直線上任意一點,證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.22.(10分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:由題意知,當(dāng)時,由,當(dāng)且僅當(dāng)時,即等號是成立,所以函數(shù)的最小值為,當(dāng)時,為單調(diào)遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調(diào)性及其應(yīng)用、全稱命題與存在命題的應(yīng)用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學(xué)生分析問題和解答問題的能力,以及轉(zhuǎn)化與化歸思想的應(yīng)用,其中解答中轉(zhuǎn)化為在的最小值不小于在上的最小值是解答的關(guān)鍵.2、D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.3、B【解析】
由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量的值,模擬程序的運行過程,代入四個選項進(jìn)行驗證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用循環(huán)模擬或代入選項驗證的方法進(jìn)行解答.4、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.5、D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.6、B【解析】
畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時,x在點B處取得最大值,即,得;當(dāng)時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.7、A【解析】
計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.8、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.9、D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點時,直線在軸上的截距最大,即,當(dāng)過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認(rèn)識,屬于基礎(chǔ)題.10、C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.11、A【解析】
設(shè)成立;反之,滿足,但,故選A.12、B【解析】
先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,難度較易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得,二項式展開式的通項為,令,則,所以得系數(shù)為.14、1【解析】
根據(jù)題意,由平均數(shù)公式可得,解得的值,進(jìn)而由方差公式計算,可得答案.【詳解】根據(jù)題意,數(shù)據(jù)7,9,,8,10的平均數(shù)為9,則,解得:,則其方差.故答案為:1.【點睛】本題考平均數(shù)、方差的計算,考查運算求解能力,求解時注意求出的值,屬于基礎(chǔ)題.15、【解析】
首先利用絕對值的意義去掉絕對值符號,之后再結(jié)合后邊的函數(shù)解析式,對照函數(shù)值等于2的時候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點,從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當(dāng)或時是分界點,結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16、1【解析】
把向量進(jìn)行轉(zhuǎn)化,用表示,利用基本不等式可求實數(shù)的值.【詳解】,解得=1.故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積應(yīng)用,綜合了基本不等式,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)的周長為,時,的周長為【解析】
(1)設(shè)的方程為,根據(jù)題意由點到直線的距離公式可得,將直線方程與拋物線方程聯(lián)立可得,設(shè)?坐標(biāo)分別是?,利用韋達(dá)定理以及中點坐標(biāo)公式消參即可求解.(2)根據(jù)拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設(shè)的方程為于是聯(lián)立設(shè)?坐標(biāo)分別是?則設(shè)的中點坐標(biāo)為,則消去參數(shù)得:(2)設(shè),,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為【點睛】本題考查了動點的軌跡方程、直線與拋物線的位置關(guān)系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.18、(1);(2)證明見解析【解析】
(1)將函數(shù)整理為分段函數(shù)形式可得,進(jìn)而分類討論求解不等式即可;(2)先利用絕對值不等式的性質(zhì)得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當(dāng)時,恒成立,;②當(dāng)時,,即,;③當(dāng)時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)(當(dāng)且僅當(dāng)時取等號)上述三式相加可得(當(dāng)且僅當(dāng)時取等號),,故得證.【點睛】本題考查解絕對值不等式和利用均值定理證明不等式,考查絕對值不等式的最值的應(yīng)用,解題關(guān)鍵是掌握分類討論解決帶絕對值不等式的方法,考查了分析能力和計算能力,屬于中檔題.19、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域為,且,令,則有,由,可得,可知當(dāng)x變化時,的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域為,且,由已知得,即,①由可得,,②聯(lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時,,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導(dǎo)數(shù)證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結(jié)合已解答的問題把要證的不等式變形,并運用已證結(jié)論先行放縮,然后再化簡或者進(jìn)一步利用導(dǎo)數(shù)證明.20、(Ⅰ).(Ⅱ).【解析】
詳解:(Ⅰ)當(dāng)時,由,解得;當(dāng)時,不成立;當(dāng)時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進(jìn)而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.21、(1)見解析(2)【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商務(wù)中心保安工作總結(jié)
- 輸液外滲知識培訓(xùn)課件
- 網(wǎng)絡(luò)科技行業(yè)的美工工作總結(jié)
- 2024年集成電路設(shè)計許可合同
- 電商數(shù)據(jù)運營實踐總結(jié)
- 云南新興職業(yè)學(xué)院《半導(dǎo)體器件物理基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 宿遷澤達(dá)職業(yè)技術(shù)學(xué)院《流體力學(xué)(Ⅰ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 攝影工作室攝影師服務(wù)總結(jié)
- 銅仁幼兒師范高等??茖W(xué)校《日語學(xué)術(shù)寫作與研究方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年智能變壓器研發(fā)生產(chǎn)合作合同3篇
- 2024-2034年中國船供油行業(yè)市場深度研究及發(fā)展趨勢預(yù)測報告
- 大學(xué)生寒假安全教育主題班會省公開課一等獎全國示范課微課金獎?wù)n件
- 小學(xué)體育期末測評方案
- (正式版)JBT 5300-2024 工業(yè)用閥門材料 選用指南
- 體育賽事旅游產(chǎn)業(yè)化路徑研究以廈門國際馬拉松賽為例
- 《鐵道概論課件》課件
- 雙師課堂方案
- 2024年廣東清遠(yuǎn)市清城區(qū)順拓投資公司招聘筆試參考題庫含答案解析
- 巴基斯坦煉銅工藝流程
- 四川省巴中市2023-2024學(xué)年高二上學(xué)期期末考試物理試題【含答案解析】
- 《兩小兒辯日》教學(xué)案例:培養(yǎng)學(xué)生的思辨能力
評論
0/150
提交評論