版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆上海市各區(qū)縣高考考前提分?jǐn)?shù)學(xué)仿真卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線:的焦點(diǎn)為,過點(diǎn)的直線交拋物線于,兩點(diǎn),其中點(diǎn)在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或2.函數(shù)在的圖象大致為()A. B.C. D.3.中國古代用算籌來進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.4.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.5.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.66.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]7.在中,在邊上滿足,為的中點(diǎn),則().A. B. C. D.8.下列命題為真命題的個(gè)數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.39.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱10.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.11.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.412.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為虛數(shù)單位,且,則=_____.14.已知函數(shù)在點(diǎn)處的切線經(jīng)過原點(diǎn),函數(shù)的最小值為,則________.15.已知雙曲線的左右焦點(diǎn)為,過作軸的垂線與相交于兩點(diǎn),與軸相交于.若,則雙曲線的離心率為_________.16.某大學(xué)、、、四個(gè)不同的專業(yè)人數(shù)占本???cè)藬?shù)的比例依次為、、、,現(xiàn)欲采用分層抽樣的方法從這四個(gè)專業(yè)的總?cè)藬?shù)中抽取人調(diào)查畢業(yè)后的就業(yè)情況,則專業(yè)應(yīng)抽取_________人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個(gè)直角三角形,求的值.18.(12分)已知函數(shù).(1)求函數(shù)的零點(diǎn);(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于,兩點(diǎn),求證:;(3)若,且不等式對(duì)一切正實(shí)數(shù)x恒成立,求k的取值范圍.19.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.20.(12分)在中,角所對(duì)的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.21.(12分)已知函數(shù)(1)當(dāng)時(shí),若恒成立,求的最大值;(2)記的解集為集合A,若,求實(shí)數(shù)的取值范圍.22.(10分)若正數(shù)滿足,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點(diǎn)睛】本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點(diǎn)的距離時(shí),一般考慮拋物線的定義.2、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象的判斷,屬于常考題.3、B【解析】
根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的.故選:.【點(diǎn)睛】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.4、B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【點(diǎn)睛】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.5、C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實(shí)軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.【點(diǎn)睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.6、B【解析】
作出可行域,對(duì)t進(jìn)行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時(shí),可行域即為如圖中的△OAM,此時(shí)目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時(shí)可知目標(biāo)函數(shù)Z=9x+6y在的交點(diǎn)()處取得最大值,此時(shí)Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點(diǎn)睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.7、B【解析】
由,可得,,再將代入即可.【詳解】因?yàn)?,所以,?故選:B.【點(diǎn)睛】本題考查平面向量的線性運(yùn)算性質(zhì)以及平面向量基本定理的應(yīng)用,是一道基礎(chǔ)題.8、C【解析】
對(duì)于①中,根據(jù)指數(shù)冪的運(yùn)算性質(zhì)和不等式的性質(zhì),可判定值正確的;對(duì)于②中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)得到函數(shù)為單調(diào)遞增函數(shù),進(jìn)而得到,即可判定是錯(cuò)誤的;對(duì)于③中,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的最大值為,進(jìn)而得到,即可判定是正確的.【詳解】由題意,對(duì)于①中,由,可得,根據(jù)不等式的性質(zhì),可得成立,所以是正確的;對(duì)于②中,設(shè)函數(shù),則,所以函數(shù)為單調(diào)遞增函數(shù),因?yàn)椋瑒t又由,所以,即,所以②不正確;對(duì)于③中,設(shè)函數(shù),則,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點(diǎn)睛】本題主要考查了不等式的性質(zhì),以及導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,其中解答中根據(jù)題意,合理構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與運(yùn)算能力,屬于中檔試題.9、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.10、A【解析】
是函數(shù)的零點(diǎn),根據(jù)五點(diǎn)法求出圖中零點(diǎn)及軸左邊第一個(gè)零點(diǎn)可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個(gè)零點(diǎn)為,在軸左邊第一個(gè)零點(diǎn)是,∴的最小值是.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對(duì)稱性.函數(shù)的零點(diǎn)就是其圖象對(duì)稱中心的橫坐標(biāo).11、D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.12、B【解析】
設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.【點(diǎn)睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
解:利用復(fù)數(shù)相等,可知由有.14、0【解析】
求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點(diǎn),所以,,,.當(dāng)時(shí),;當(dāng)時(shí),.故函數(shù)的最小值,所以.故答案為:0.【點(diǎn)睛】本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..15、【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點(diǎn)睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計(jì)算量.16、【解析】
求出專業(yè)人數(shù)在、、、四個(gè)專業(yè)總?cè)藬?shù)的比例后可得.【詳解】由題意、、、四個(gè)不同的專業(yè)人數(shù)的比例為,故專業(yè)應(yīng)抽取的人數(shù)為.故答案為:1.【點(diǎn)睛】本題考查分層抽樣,根據(jù)分層抽樣的定義,在各層抽取樣本數(shù)量是按比例抽取的.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)當(dāng)時(shí),,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因?yàn)楹瘮?shù)的圖象與軸恰好圍成一個(gè)直角三角形,所以,解得,當(dāng)時(shí),,函數(shù)的圖象與軸沒有交點(diǎn),不符合題意;當(dāng)時(shí),,函數(shù)的圖象與軸恰好圍成一個(gè)直角三角形,符合題意.綜上,可得.18、(1)x=1(2)證明見解析(3)【解析】
(1)令,根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)區(qū)間,求出極小值,進(jìn)而求解;(2)轉(zhuǎn)化思想,要證,即證,即證,構(gòu)造函數(shù)進(jìn)而求證;(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),分類討論進(jìn)而求解.【詳解】解:(1)令,所以,當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),,在單調(diào)遞減;所以,所以的零點(diǎn)為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,即,所以原不等式成立.(3)不等式對(duì)一切正實(shí)數(shù)恒成立,,設(shè),,記,△,①當(dāng)△時(shí),即時(shí),恒成立,故單調(diào)遞增.于是當(dāng)時(shí),,又,故,當(dāng)時(shí),,又,故,又當(dāng)時(shí),,因此,當(dāng)時(shí),,②當(dāng)△,即時(shí),設(shè)的兩個(gè)不等實(shí)根分別為,,又,于是,故當(dāng)時(shí),,從而在單調(diào)遞減;當(dāng)時(shí),,此時(shí),于是,即舍去,綜上,的取值范圍是.【點(diǎn)睛】(1)考查函數(shù)求導(dǎo),根據(jù)導(dǎo)函數(shù)確定函數(shù)的單調(diào)性,零點(diǎn);(2)考查轉(zhuǎn)化思想,構(gòu)造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調(diào)性,函數(shù)的求導(dǎo);屬于難題.19、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點(diǎn),∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1);(2).【解析】
(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函數(shù)值域的方法即可得到答案.【詳解】(1)因?yàn)?,所?在中,由正弦定理得,所以,即.在中,由余弦定理得,又因?yàn)椋?(2)由(1)得,在中,,所以.因?yàn)?,所以,所以?dāng),即時(shí),有最大值1,所以的最大值為.【點(diǎn)睛】本題考查正余弦定理解三角形,涉及到兩角差的正弦公式、輔助角公式、向量數(shù)量積的坐標(biāo)運(yùn)算,是一道容易題.21、(1);(2)【解析】
(1)當(dāng)時(shí),由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度大米加工企業(yè)廢棄物處理合作合同3篇
- 2024年甲乙雙方關(guān)于購買家具的合同
- 辦公環(huán)境的明燈創(chuàng)新型LED手電筒的貢獻(xiàn)
- 辦公環(huán)境中的安全生產(chǎn)管理與風(fēng)險(xiǎn)防范
- 2025中國鐵路上海局集團(tuán)限公司招聘577人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國聯(lián)通廣西分公司招聘88人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國移動(dòng)浙江公司校園招聘580人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國電信河北滄州分公司校園招聘4人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國建筑一局(集團(tuán))限公司一公司廣東分公司市場(chǎng)經(jīng)理招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國化學(xué)工程重型機(jī)械化限公司招聘75人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024北京西城初一(上)期末數(shù)學(xué)(教師版)
- (2024年)中國傳統(tǒng)文化介紹課件
- 宗親捐款倡議書
- 蛇年春聯(lián)對(duì)聯(lián)240副
- 廣東省廣州天河區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末數(shù)學(xué)試卷含答案
- 江蘇省百校2025屆高三上學(xué)期12月聯(lián)考語文試題(含答案)
- 北京市朝陽區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期期末英語試題
- 2024年職業(yè)衛(wèi)生技術(shù)人員評(píng)價(jià)方向考試題庫附答案
- 人體器官有償捐贈(zèng)流程
- 《了凡四訓(xùn)》課件
- 味精生產(chǎn)廢水處理工程設(shè)計(jì)畢業(yè)設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論