2025屆海南省海口市重點(diǎn)中學(xué)高考數(shù)學(xué)四模試卷含解析_第1頁
2025屆海南省??谑兄攸c(diǎn)中學(xué)高考數(shù)學(xué)四模試卷含解析_第2頁
2025屆海南省??谑兄攸c(diǎn)中學(xué)高考數(shù)學(xué)四模試卷含解析_第3頁
2025屆海南省??谑兄攸c(diǎn)中學(xué)高考數(shù)學(xué)四模試卷含解析_第4頁
2025屆海南省??谑兄攸c(diǎn)中學(xué)高考數(shù)學(xué)四模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆海南省??谑兄攸c(diǎn)中學(xué)高考數(shù)學(xué)四模試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i2.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長度后,所得到的圖象關(guān)于軸對稱,則的最小值是()A. B. C. D.3.對于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.4.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.5.設(shè)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,若,,則公比()A. B.4 C. D.26.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨(dú)立完成一幅十字繡贈(zèng)送給當(dāng)?shù)氐拇逦瘯?huì),這三幅十字繡分別命名為“鴻福齊天”、“國富民強(qiáng)”、“興國之路”,為了弄清“國富民強(qiáng)”這一作品是誰制作的,村支書對三人進(jìn)行了問話,得到回復(fù)如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強(qiáng)”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明7.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,若函數(shù)的圖象的一條對稱軸是,則的最小值為A. B. C. D.8.若,則的虛部是()A. B. C. D.9.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.在聲學(xué)中,聲強(qiáng)級(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.11.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.404012.在正方體中,點(diǎn),,分別為棱,,的中點(diǎn),給出下列命題:①;②;③平面;④和成角為.正確命題的個(gè)數(shù)是()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)和為,且成等差數(shù)列,,數(shù)列的前項(xiàng)和為,則滿足的最小正整數(shù)的值為______________.14.一個(gè)房間的地面是由12個(gè)正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.15.若函數(shù)的圖像上存在點(diǎn),滿足約束條件,則實(shí)數(shù)的最大值為__________.16.已知數(shù)列的各項(xiàng)均為正數(shù),滿足,.,若是等比數(shù)列,數(shù)列的通項(xiàng)公式_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長;(2)求二面角的余弦值.18.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.19.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.20.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說明理由.21.(12分)設(shè)函數(shù).(Ⅰ)討論函數(shù)的單調(diào)性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數(shù)列中,,且,若數(shù)列的前n項(xiàng)和為,求證:.22.(10分)已知橢圓的右頂點(diǎn)為,點(diǎn)在軸上,線段與橢圓的交點(diǎn)在第一象限,過點(diǎn)的直線與橢圓相切,且直線交軸于.設(shè)過點(diǎn)且平行于直線的直線交軸于點(diǎn).(Ⅰ)當(dāng)為線段的中點(diǎn)時(shí),求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.2、A【解析】

化簡為,求出它的圖象向左平移個(gè)單位長度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對稱列方程即可求得,問題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識,考查轉(zhuǎn)化能力,屬于中檔題。3、A【解析】

由已知可得的單調(diào)性,再由可得對稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..4、C【解析】程序在運(yùn)行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時(shí),要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計(jì)數(shù)時(shí),注意要統(tǒng)計(jì)的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.5、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項(xiàng)等比數(shù)列得,∴,故選:D.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】

將三個(gè)人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個(gè)人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強(qiáng)小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點(diǎn)睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎(chǔ)題.7、C【解析】

將函數(shù)的圖象向左平移個(gè)單位長度,得到函數(shù)的圖象,因?yàn)楹瘮?shù)的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.8、D【解析】

通過復(fù)數(shù)的乘除運(yùn)算法則化簡求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.9、B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B【點(diǎn)睛】本題考查了充分必要條件,屬于簡單題.10、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.11、D【解析】

計(jì)算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點(diǎn)睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.12、C【解析】

建立空間直角坐標(biāo)系,利用向量的方法對四個(gè)命題逐一分析,由此得出正確命題的個(gè)數(shù).【詳解】設(shè)正方體邊長為,建立空間直角坐標(biāo)系如下圖所示,,.①,,所以,故①正確.②,,不存在實(shí)數(shù)使,故不成立,故②錯(cuò)誤.③,,,故平面不成立,故③錯(cuò)誤.④,,設(shè)和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個(gè).故選:C【點(diǎn)睛】本小題主要考查空間線線、線面位置關(guān)系的向量判斷方法,考查運(yùn)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

本題先根據(jù)公式初步找到數(shù)列的通項(xiàng)公式,然后根據(jù)等差中項(xiàng)的性質(zhì)可解得的值,即可確定數(shù)列的通項(xiàng)公式,代入數(shù)列的表達(dá)式計(jì)算出數(shù)列的通項(xiàng)公式,然后運(yùn)用裂項(xiàng)相消法計(jì)算出前項(xiàng)和,再代入不等式進(jìn)行計(jì)算可得最小正整數(shù)的值.【詳解】由題意,當(dāng)時(shí),.當(dāng)時(shí),.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點(diǎn)睛】本題主要考查數(shù)列求通項(xiàng)公式、裂項(xiàng)相消法求前項(xiàng)和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計(jì)算、邏輯思維能力和數(shù)學(xué)運(yùn)算能力.14、11【解析】

將圖形中左側(cè)的兩列瓷磚的形狀先確定,再由此進(jìn)行分類,在每一類里面又分按兩種形狀的瓷磚的數(shù)量進(jìn)行分類,在其中會(huì)有相同元素的排列問題,需用到“縮倍法”.采用分類計(jì)數(shù)原理,求得總的方法數(shù).【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個(gè):,3個(gè),2個(gè):,1個(gè),4個(gè):,(2)左側(cè)兩列如圖貼磚,然后貼剩下的部分:3個(gè):,1個(gè),2個(gè):,綜上,一共有(種).故答案為:11.【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.15、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當(dāng)與交于點(diǎn)B(2,1),當(dāng)直線過B點(diǎn)時(shí),m取得最大值為1.點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準(zhǔn)確無誤地作出可行域;二、畫標(biāo)準(zhǔn)函數(shù)所對應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三、一般情況下,目標(biāo)函數(shù)的最大或最小會(huì)在可行域的端點(diǎn)或邊界上取得.16、【解析】

利用遞推關(guān)系,等比數(shù)列的通項(xiàng)公式即可求得結(jié)果.【詳解】因?yàn)?,所以,因?yàn)槭堑缺葦?shù)列,所以數(shù)列的公比為1.又,所以當(dāng)時(shí),有.這說明在已知條件下,可以得到唯一的等比數(shù)列,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)數(shù)列的問題,涉及到的知識點(diǎn)有根據(jù)遞推公式求數(shù)列的通項(xiàng)公式,屬于簡單題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先證得,設(shè)與交于點(diǎn),在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點(diǎn),在中,可求得,則,可求得,則(2)以為原點(diǎn),方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點(diǎn)睛】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【解析】

(Ⅰ)取中點(diǎn),連結(jié)、,推導(dǎo)出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點(diǎn),連結(jié),,推導(dǎo)出平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值;(Ⅲ)假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點(diǎn),連結(jié)、,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點(diǎn),連結(jié),,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,1,,,0,,,1,,,0,,,,,,0,,,,,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,設(shè)二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).則,,,,,,平面的法向量,,解得,線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.19、(1)證明見解析;(2)【解析】

(1)由已知可證,即可證明結(jié)論;(2)根據(jù)已知可證平面,建立空間直角坐標(biāo)系,求出坐標(biāo),進(jìn)而求出平面和平面的法向量坐標(biāo),由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點(diǎn),∴,∵平面且,∴平面,以為原點(diǎn),分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,∴設(shè)平面的法向量為,則,∴,取,則.設(shè)平面的法向量為,則,∴,取,則.∴,設(shè)二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點(diǎn),因?yàn)樗倪呅螢槠叫兴倪呅?,所以為中點(diǎn),又因?yàn)樗倪呅螢榱庑?,所以為中點(diǎn),∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點(diǎn)睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學(xué)運(yùn)算的數(shù)學(xué)核心素養(yǎng),屬于中檔題.20、(1);(2);(3)存在,1.【解析】

(1)利用基本量法直接計(jì)算即可;(2)利用錯(cuò)位相減法計(jì)算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因?yàn)?,所以,即,解得,或(舍去?所以.(2),,所以,所以.(3)由(1)可得,,所以.因?yàn)槭菙?shù)列或中的一項(xiàng),所以,所以,因?yàn)?,所以,又,則或.當(dāng)時(shí),有,即,令.則.當(dāng)時(shí),;當(dāng)時(shí),,即.由,知無整數(shù)解.當(dāng)時(shí),有,即存在使得是數(shù)列中的第2項(xiàng),故存在正整數(shù),使得是數(shù)列中的項(xiàng).【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,數(shù)列中的存在性問題,是一道較為綜合的題.21、(Ⅰ)函數(shù)在上單調(diào)遞減,在單調(diào)遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】

(Ⅰ)先求出函數(shù)f(x)的導(dǎo)數(shù),通過解關(guān)于導(dǎo)數(shù)的不等式,從而求出函數(shù)的單調(diào)區(qū)間;(Ⅱ)設(shè)g(x)=f(x)﹣ax,先求出函數(shù)g(x)的導(dǎo)數(shù),通過討論a的范圍,得到函數(shù)的單調(diào)性,從而求出a的最小值;(Ⅲ)先求出數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列,,,問題轉(zhuǎn)化為證明:,通過換元法或數(shù)學(xué)歸納法進(jìn)行證明即可.【詳解】解:(Ⅰ)f(x)的定義域?yàn)椋ī?,+∞),,當(dāng)時(shí),f′(x)<2,當(dāng)時(shí),f′(x)>2,所以函數(shù)f(x)在上單調(diào)遞減,在單調(diào)遞增.(Ⅱ)設(shè),則,因?yàn)閤≥2,故,(?。┊?dāng)a≥1時(shí),1﹣a≤2,g′(x)≤2,所以g(x)在[2,+∞)單調(diào)遞減,而g(2)=2,所以對所有的x≥2,g(x)≤2,即f(x)≤ax;(ⅱ)當(dāng)1<a<1時(shí),2<1﹣a<1,若,則g′(x)>2,g(x)單調(diào)遞增,而g(2)=2,所以當(dāng)時(shí),g(x)>2,即f(x)>ax;(ⅲ)當(dāng)a≤1時(shí),1﹣a≥1,g′(x)>2,所以g(x)在[2,+∞)單調(diào)遞增,而g(2)=2,所以對所有的x>2,g(x)>2,即f(x)>ax;綜上,a的最小值為1.(Ⅲ)由(1﹣an+1)(1+an)=1得,an﹣an+1=an?an+1,由a1=1得,an≠2,所以,數(shù)列是以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論