




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黔西南市重點中學2025屆高三沖刺模擬數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,若,則實數的值為()A. B. C. D.2.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為()A. B. C. D.3.等腰直角三角形的斜邊AB為正四面體側棱,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,有下列說法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個位置,使得;(3)設二面角的平面角為,則;(4)AE的中點M與AB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.其中,正確說法的個數是()A.1 B.2 C.3 D.44.已知復數滿足,(為虛數單位),則()A. B. C. D.35.命題:的否定為A. B.C. D.6.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,7.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.8.趙爽是我國古代數學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.9.已知復數是純虛數,其中是實數,則等于()A. B. C. D.10.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件11.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.12.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.14.已知等差數列的各項均為正數,,且,若,則________.15.設為等比數列的前項和,若,且,,成等差數列,則.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)判斷函數在區(qū)間上的零點的個數;(2)記函數在區(qū)間上的兩個極值點分別為、,求證:.18.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.19.(12分)某工廠生產某種電子產品,每件產品不合格的概率均為,現(xiàn)工廠為提高產品聲譽,要求在交付用戶前每件產品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產品,且每件產品檢驗合格與否相互獨立.若每件產品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產品每個一組進行分組檢驗,如果某一組產品檢驗合格,則說明該組內產品均合格,若檢驗不合格,則說明該組內有不合格產品,再對該組內每一件產品單獨進行檢驗,如此,每一組產品只需檢驗次或次.設該工廠生產件該產品,記每件產品的平均檢驗次數為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數越少;(ii)當時,求使該方案最合理時的值及件該產品的平均檢驗次數.20.(12分)已知函數.⑴當時,求函數的極值;⑵若存在與函數,的圖象都相切的直線,求實數的取值范圍.21.(12分)已知函數,其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.22.(10分)已知函數.(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通常可得到兩個向量的數量積為0,繼而結合條件進行化簡、整理.2、A【解析】
根據球的特點可知截面是一個圓,根據等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.3、C【解析】
解:對于(1),當CD⊥平面ABE,且E在AB的右上方時,E到平面BCD的距離最大,當CD⊥平面ABE,且E在AB的左下方時,E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對于(2),連接DE,若存在某個位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進一步可得AE=DE,此時E﹣ABD為正三棱錐,故(2)正確;對于(3),取AB中點O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對于(4)AE的中點M與AB的中點N連線交平面BCD于點P,P到BC的距離為:dP﹣BC,因為<1,所以點P的軌跡為橢圓.(4)正確.故選:C.點睛:該題考查的是有關多面體和旋轉體對應的特征,以幾何體為載體,考查相關的空間關系,在解題的過程中,需要認真分析,得到結果,注意對知識點的靈活運用.4、A【解析】,故,故選A.5、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結論否定,可知命題的否定為,故選C.6、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.7、B【解析】
根據三角函數定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.【點睛】本題考查了三角函數定義,和差公式,意在考查學生的計算能力.8、A【解析】
根據幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎題.9、A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.10、B【解析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題11、A【解析】
先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.12、A【解析】
由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.14、【解析】
設等差數列的公差為,根據,且,可得,解得,進而得出結論.【詳解】設公差為,因為,所以,所以,所以故答案為:【點睛】本題主要考查了等差數列的通項公式、需熟記公式,屬于基礎題.15、.【解析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.16、【解析】
計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數圖象和性質,考查了轉化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)利用導數分析函數在區(qū)間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數的單調性推導出,再利用正弦函數的單調性可得出結論.【詳解】(1),,,當時,,,,則函數在上單調遞增;當時,,,,則函數在上單調遞減;當時,,,,則函數在上單調遞增.,,,,.所以,函數在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數在區(qū)間上的零點的個數為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數在區(qū)間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調遞增,得,再由在上單調遞減,得,即.【點睛】本題考查利用導數研究函數的零點個數問題,同時也考查了利用導數證明不等式,考查分析問題和解決問題的能力,屬于難題.18、(1);(2)【解析】
(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據,利用兩角和的余弦得到,利用數形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數形結合的方法,屬于中檔題.19、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數最少,約為594次.【解析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據函數的單調性即可證出;記,當且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調遞增,故越小,越小,即所需平均檢驗次數越少,該方案越合理記當且取最小值時,該方案最合理,因為,,所以時平均檢驗次數最少,約為次.【點睛】本題考查了離散型隨機變量的分布列、數學期望,考查了分析問題、解決問題的能力,屬于中檔題.20、(1)當時,函數取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導分析,得函數取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數的定義域為當時,,所以所以當時,,當時,,所以函數在區(qū)間單調遞減,在區(qū)間單調遞增,所以當時,函數取得極小值為,無極大值;(2)設函數上點與函數上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區(qū)間上單調遞減,在區(qū)間上單調遞增,代入可得:設,則對恒成立,所以在區(qū)間上單調遞增,又所以當時,即當時,又當時因此當時,函數必有零點;即當時,必存在使得成立;即存在使得函數上點與函數上點處切線相同.又由得:所以單調遞減,因此所以實數的取值范圍是.21、(1)(2)證明見解析【解析】
(1)求導,代入,求出在處的導數值及函數值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當時,,,則在的切線方程為;(2)證明:令,解得或,①當時,恒成立,此時函數在上單調遞減,∴函數無極值;②當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴;③當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴,綜上,函數的極大值恒大于0.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 不斷深入WPS知識的一級考試試題及答案
- 康復醫(yī)療服務行業(yè)產業(yè)鏈上下游分析與市場機遇研究報告
- 功能性食品市場消費需求洞察與產品創(chuàng)新方向研究報告
- 教育科技企業(yè)商業(yè)模式創(chuàng)新與可持續(xù)發(fā)展戰(zhàn)略研究報告
- 探索數字化教室的教學效果與問題
- 基于互聯(lián)網的現(xiàn)代辦公軟件及效率研究
- 商業(yè)領域的組織結構變革與數字化轉型協(xié)同發(fā)展
- 數字化助力商業(yè)地產項目提升客戶體驗與運營效率研究
- 2025年計算機二級VB考試全真試題及答案
- 二手奢侈品鑒定與交易規(guī)范2025年市場增長動力研究報告
- 能源費用托管型合同能源管理項目
- 退化草地修復親水性聚氨酯復合材料應用技術規(guī)范
- 暗挖格柵加工技術交底
- DB5106∕T 01-2019 農村彩鋼棚管理指南
- 2023年安徽省公安機關警務輔助人員條例訓練題庫211題及答案
- LBS支撐平臺LBS-p中移動終端地圖數據格式及數據策略研究的中期報告
- 2023年南昌市外國與學校小升初能力試題
- 護理基礎縱橫知到章節(jié)答案智慧樹2023年上海健康醫(yī)學院
- 2023年安全生產月電力安全生產培訓PPT鑄安全文化之魂守安全發(fā)展之基PPT課件(帶內容)
- SQL必知必會(第5版)
- 湘版(2017秋)4年級下冊實驗報告單
評論
0/150
提交評論