西藏藏醫(yī)藥大學《機器學習與模式識別I(雙語)》2023-2024學年第一學期期末試卷_第1頁
西藏藏醫(yī)藥大學《機器學習與模式識別I(雙語)》2023-2024學年第一學期期末試卷_第2頁
西藏藏醫(yī)藥大學《機器學習與模式識別I(雙語)》2023-2024學年第一學期期末試卷_第3頁
西藏藏醫(yī)藥大學《機器學習與模式識別I(雙語)》2023-2024學年第一學期期末試卷_第4頁
西藏藏醫(yī)藥大學《機器學習與模式識別I(雙語)》2023-2024學年第一學期期末試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁西藏藏醫(yī)藥大學《機器學習與模式識別I(雙語)》

2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、想象一個無人駕駛汽車的環(huán)境感知任務,需要識別道路、車輛、行人等對象。以下哪種機器學習方法可能是最關鍵的?()A.目標檢測算法,如FasterR-CNN或YOLO,能夠快速準確地識別多個對象,但對小目標檢測可能存在挑戰(zhàn)B.語義分割算法,對圖像進行像素級的分類,但計算量較大C.實例分割算法,不僅區(qū)分不同類別,還區(qū)分同一類別中的不同個體,但模型復雜D.以上三種方法結合使用,根據具體場景和需求進行選擇和優(yōu)化2、假設正在進行一個異常檢測任務,例如檢測網絡中的異常流量。如果正常數據的模式較為復雜,以下哪種方法可能更適合用于發(fā)現異常?()A.基于統(tǒng)計的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法3、在一個文本生成任務中,例如生成詩歌或故事,以下哪種方法常用于生成自然語言文本?()A.基于規(guī)則的方法B.基于模板的方法C.基于神經網絡的方法,如TransformerD.以上都不是4、假設正在開發(fā)一個智能推薦系統(tǒng),用于向用戶推薦個性化的商品。系統(tǒng)需要根據用戶的歷史購買記錄、瀏覽行為、搜索關鍵詞等信息來預測用戶的興趣和需求。在這個過程中,特征工程起到了關鍵作用。如果要將用戶的購買記錄轉化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計用戶購買每種商品的頻率B.對用戶購買的商品進行分類,并計算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計算用戶購買商品的時間間隔和購買周期5、想象一個語音合成的任務,需要生成自然流暢的語音。以下哪種技術可能是核心的?()A.基于規(guī)則的語音合成,方法簡單但不夠自然B.拼接式語音合成,利用預先錄制的語音片段拼接,但可能存在不連貫問題C.參數式語音合成,通過模型生成聲學參數再轉換為語音,但音質可能受限D.端到端的神經語音合成,直接從文本生成語音,效果自然但訓練難度大6、考慮一個圖像分類任務,使用深度學習模型進行訓練。在訓練過程中,如果發(fā)現模型在訓練集上的準確率很高,但在驗證集上的準確率較低,可能存在以下哪種問題?()A.模型欠擬合,需要增加模型的復雜度B.數據預處理不當,需要重新處理數據C.模型過擬合,需要采取正則化措施D.訓練數據量不足,需要增加更多的數據7、在進行模型融合時,以下關于模型融合的方法和作用,哪一項是不準確的?()A.可以通過平均多個模型的預測結果來進行融合,降低模型的方差B.堆疊(Stacking)是一種將多個模型的預測結果作為輸入,訓練一個新的模型進行融合的方法C.模型融合可以結合不同模型的優(yōu)點,提高整體的預測性能D.模型融合總是能顯著提高模型的性能,無論各個模型的性能如何8、假設我們有一個時間序列數據,想要預測未來的值。以下哪種機器學習算法可能不太適合()A.線性回歸B.長短期記憶網絡(LSTM)C.隨機森林D.自回歸移動平均模型(ARMA)9、在構建一個機器學習模型時,我們通常需要對數據進行預處理。假設我們有一個包含大量缺失值的數據集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機值填充缺失值D.不處理缺失值,直接使用原始數據10、在強化學習中,智能體通過與環(huán)境進行交互來學習最優(yōu)策略。假設一個機器人需要在復雜的環(huán)境中找到通往目標的最佳路徑,并且在途中會遇到各種障礙和獎勵。在這種情況下,以下哪種強化學習算法可能更適合解決這個問題?()A.Q-learning算法,通過估計狀態(tài)-動作值函數來選擇動作B.SARSA算法,基于當前策略進行策略評估和改進C.策略梯度算法,直接優(yōu)化策略的參數D.以上算法都不適合,需要使用專門的路徑規(guī)劃算法11、在一個回歸問題中,如果需要考慮多個輸出變量之間的相關性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務學習模型D.以上模型都可以12、在一個異常檢測的任務中,數據分布呈現多峰且存在離群點。以下哪種異常檢測算法可能表現較好?()A.基于密度的局部異常因子(LOF)算法,能夠發(fā)現局部密度差異較大的異常點,但對參數敏感B.一類支持向量機(One-ClassSVM),適用于高維數據,但對數據分布的假設較強C.基于聚類的異常檢測,將遠離聚類中心的點視為異常,但聚類效果對結果影響較大D.以上算法結合使用,根據數據特點選擇合適的方法或進行組合13、當使用支持向量機(SVM)進行分類任務時,如果數據不是線性可分的,通常會采用以下哪種方法()A.增加樣本數量B.降低維度C.使用核函數將數據映射到高維空間D.更換分類算法14、在深度學習中,卷積神經網絡(CNN)被廣泛應用于圖像識別等領域。假設我們正在設計一個CNN模型,對于圖像分類任務,以下哪個因素對模型性能的影響較大()A.卷積核的大小B.池化層的窗口大小C.全連接層的神經元數量D.以上因素影響都不大15、機器學習中的算法選擇需要考慮多個因素。以下關于算法選擇的說法中,錯誤的是:算法選擇需要考慮數據的特點、問題的類型、計算資源等因素。不同的算法適用于不同的場景。那么,下列關于算法選擇的說法錯誤的是()A.對于小樣本數據集,優(yōu)先選擇復雜的深度學習算法B.對于高維度數據,優(yōu)先選擇具有降維功能的算法C.對于實時性要求高的任務,優(yōu)先選擇計算速度快的算法D.對于不平衡數據集,優(yōu)先選擇對不平衡數據敏感的算法二、簡答題(本大題共3個小題,共15分)1、(本題5分)解釋如何使用機器學習進行故障診斷。2、(本題5分)說明機器學習中支持向量機(SVM)的基本思想。3、(本題5分)簡述機器學習在進化遺傳學中的進化路徑預測。三、論述題(本大題共5個小題,共25分)1、(本題5分)闡述機器學習中的過擬合問題及解決方法。分析正則化、數據增強、早停法等技術在防止過擬合中的作用和原理。2、(本題5分)闡述機器學習中的深度學習在語音合成中的應用。分析語音生成、音色調整、情感表達等方面的深度學習方法和應用效果。3、(本題5分)探討機器學習在生物醫(yī)學文本挖掘中的應用。生物醫(yī)學領域有大量的文本數據,機器學習可以用于文本挖掘和知識發(fā)現。分析其在生物醫(yī)學文本挖掘中的具體應用方法。4、(本題5分)分析機器學習算法中的隨機森林算法。論述其基本原理、構建過程以及在分類和回歸問題中的優(yōu)勢。探討隨機森林算法的參數調整及性能評估方法。5、(本題5分)論述機器學習中的增量學習。解釋增量學習的概念和原理,介紹常見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論