版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省揭陽(yáng)市一中等三校重點(diǎn)中學(xué)2025屆高三第二次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是過(guò)拋物線(xiàn)焦點(diǎn)的弦,是原點(diǎn),則()A.-2 B.-4 C.3 D.-32.已知的展開(kāi)式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.33.已知全集,集合,則()A. B. C. D.4.命題:存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.5.在平面直角坐標(biāo)系中,經(jīng)過(guò)點(diǎn),漸近線(xiàn)方程為的雙曲線(xiàn)的標(biāo)準(zhǔn)方程為()A. B. C. D.6.已知函數(shù),其中表示不超過(guò)的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)7.水平放置的,用斜二測(cè)畫(huà)法作出的直觀(guān)圖是如圖所示的,其中,則繞AB所在直線(xiàn)旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.8.設(shè)、是兩條不同的直線(xiàn),、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且9.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.10.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q11.在區(qū)間上隨機(jī)取一個(gè)實(shí)數(shù),使直線(xiàn)與圓相交的概率為()A. B. C. D.12.下列幾何體的三視圖中,恰好有兩個(gè)視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長(zhǎng)寬高互不相等的長(zhǎng)方體二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長(zhǎng)為1,若向量、、滿(mǎn)足,則實(shí)數(shù)的值為_(kāi)______.14.函數(shù)在內(nèi)有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.15.如圖,在平面四邊形中,點(diǎn),是橢圓短軸的兩個(gè)端點(diǎn),點(diǎn)在橢圓上,,記和的面積分別為,,則______.16.若雙曲線(xiàn)C:(,)的頂點(diǎn)到漸近線(xiàn)的距離為,則的最小值________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角、、所對(duì)的邊分別為、、,且.(1)求角的大?。唬?)若,的面積為,求及的值.18.(12分)某工廠(chǎng)生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長(zhǎng)度為,只要誤差的絕對(duì)值不超過(guò)就認(rèn)為合格,工廠(chǎng)質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測(cè)其長(zhǎng)度,繪制條形統(tǒng)計(jì)圖如圖:(1)估計(jì)該批次產(chǎn)品長(zhǎng)度誤差絕對(duì)值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠(chǎng)生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率不小于0.8時(shí),該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值.19.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項(xiàng)和;(2)若,求數(shù)列的前n項(xiàng)和為.20.(12分)如圖,四棱錐中,底面,,點(diǎn)在線(xiàn)段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線(xiàn)方程(2)設(shè)函數(shù),對(duì)于任意,恒成立,求的取值范圍.22.(10分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過(guò)點(diǎn),過(guò)點(diǎn)且不平行于坐標(biāo)軸的直線(xiàn)交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,直線(xiàn)交軸于點(diǎn).(1)求的周長(zhǎng);(2)求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè),,設(shè):,聯(lián)立方程得到,計(jì)算得到答案.【詳解】設(shè),,故.易知直線(xiàn)斜率不為,設(shè):,聯(lián)立方程,得到,故,故.故選:.【點(diǎn)睛】本題考查了拋物線(xiàn)中的向量的數(shù)量積,設(shè)直線(xiàn)為可以簡(jiǎn)化運(yùn)算,是解題的關(guān)鍵.2、A【解析】
先求的展開(kāi)式,再分類(lèi)分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開(kāi)式的常數(shù)項(xiàng),從而求出的值.【詳解】展開(kāi)式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開(kāi)式中的系數(shù)問(wèn)題,其中對(duì)所取的項(xiàng)要進(jìn)行分類(lèi)討論,屬于基礎(chǔ)題.3、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補(bǔ)集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算問(wèn)題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.4、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項(xiàng).【詳解】對(duì)于命題,由于,所以命題為真命題.對(duì)于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.5、B【解析】
根據(jù)所求雙曲線(xiàn)的漸近線(xiàn)方程為,可設(shè)所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線(xiàn)的方程.【詳解】∵雙曲線(xiàn)的漸近線(xiàn)方程為設(shè)所求雙曲線(xiàn)的標(biāo)準(zhǔn)方程為k.又在雙曲線(xiàn)上,則k=16-2=14,即雙曲線(xiàn)的方程為∴雙曲線(xiàn)的標(biāo)準(zhǔn)方程為故選:B【點(diǎn)睛】本題主要考查用待定系數(shù)法求雙曲線(xiàn)的方程,雙曲線(xiàn)的定義和標(biāo)準(zhǔn)方程,以及雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
根據(jù)表示不超過(guò)的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進(jìn)而下結(jié)論.【詳解】由表示不超過(guò)的最大正整數(shù),其函數(shù)圖象為選項(xiàng)A,函數(shù),故錯(cuò)誤;選項(xiàng)B,函數(shù)為非奇非偶函數(shù),故錯(cuò)誤;選項(xiàng)C,函數(shù)是以1為周期的周期函數(shù),故正確;選項(xiàng)D,函數(shù)在區(qū)間上是增函數(shù),但在整個(gè)定義域范圍上不具備單調(diào)性,故錯(cuò)誤.故選:C【點(diǎn)睛】本題考查對(duì)題干的理解,屬于函數(shù)新定義問(wèn)題,可作出圖象分析性質(zhì),屬于較難題.7、B【解析】
根據(jù)斜二測(cè)畫(huà)法的基本原理,將平面直觀(guān)圖還原為原幾何圖形,可得,,繞AB所在直線(xiàn)旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,圓錐的側(cè)面展開(kāi)圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測(cè)畫(huà)法”可得,,,繞AB所在直線(xiàn)旋轉(zhuǎn)一周后形成的幾何體是兩個(gè)相同圓錐的組合體,它的表面積為.故選:【點(diǎn)睛】本題考查斜二測(cè)畫(huà)法的應(yīng)用及組合體的表面積求法,難度較易.8、B【解析】由且可得,故選B.9、B【解析】
根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過(guò)變形求解出的周期,進(jìn)而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.10、B【解析】因?yàn)閺挠?件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯(cuò)誤,則?p是正確的;在邊長(zhǎng)為4的正方形ABCD內(nèi)任取一點(diǎn)M點(diǎn)睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計(jì)算公式的運(yùn)用、幾何概型的特征與計(jì)算公式的運(yùn)用等知識(shí)與方法的綜合運(yùn)用,以及分析問(wèn)題解決問(wèn)題的能力。11、D【解析】
利用直線(xiàn)與圓相交求出實(shí)數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線(xiàn)與圓相交,則,解得.因此,所求概率為.故選:D.【點(diǎn)睛】本題考查幾何概型概率的計(jì)算,同時(shí)也考查了利用直線(xiàn)與圓相交求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.12、C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個(gè)三視圖都是相等的正方形,球的三個(gè)三視圖都是相等的圓,圓錐的三個(gè)三視圖有一個(gè)是圓,另外兩個(gè)是全等的等腰三角形,長(zhǎng)寬高互不相等的長(zhǎng)方體的三視圖是三個(gè)兩兩不全等的矩形.故選:C.【點(diǎn)睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計(jì)算出的取值.【詳解】由圖可知:,所以,又因?yàn)?,所以,所?故答案為:.【點(diǎn)睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運(yùn)算,難度較易.已知,若,則有.14、【解析】
設(shè),,設(shè),函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù),解得答案.【詳解】,設(shè),,則.原函數(shù)等價(jià)于函數(shù),即有兩個(gè)解.設(shè),則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當(dāng)時(shí),易知不成立;當(dāng)時(shí),根據(jù)對(duì)稱(chēng)性,考慮時(shí)的情況,,畫(huà)出簡(jiǎn)圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對(duì)稱(chēng)性知:.故答案為:.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)問(wèn)題,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力,畫(huà)出圖像是解題的關(guān)鍵.15、【解析】
依題意易得A、B、C、D四點(diǎn)共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計(jì)算比值即可.【詳解】因?yàn)?,所以A、B、C、D四點(diǎn)共圓,直徑為,又A、C關(guān)于x軸對(duì)稱(chēng),所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點(diǎn)是E,所以D的橫坐標(biāo)為,故.故答案為:.【點(diǎn)睛】本題考查橢圓中的四點(diǎn)共圓及三角形面積之比的問(wèn)題,考查學(xué)生基本計(jì)算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.16、【解析】
根據(jù)雙曲線(xiàn)的方程求出其中一條漸近線(xiàn),頂點(diǎn),再利用點(diǎn)到直線(xiàn)的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線(xiàn)C:(,,可得一條漸近線(xiàn),一個(gè)頂點(diǎn),所以,解得,則,當(dāng)且僅當(dāng)時(shí),取等號(hào),所以的最小值為.故答案為:【點(diǎn)睛】本題考查了雙曲線(xiàn)的幾何性質(zhì)、點(diǎn)到直線(xiàn)的距離公式、基本不等式求最值,注意驗(yàn)證等號(hào)成立的條件,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2);【解析】
(1)由代入中計(jì)算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因?yàn)?,可得:,∴,或(舍),∵,?(2)由余弦定理,得所以,故,又,所以,所以.【點(diǎn)睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.18、(1)(2)【解析】
(1)根據(jù)題意即可寫(xiě)出該批次產(chǎn)品長(zhǎng)度誤差的絕對(duì)值的頻率分布列,再根據(jù)期望公式即可求出;(2)由(1)可知,任取一件產(chǎn)品是標(biāo)準(zhǔn)長(zhǎng)度的概率為0.4,即可求出隨機(jī)抽取2件產(chǎn)品,都不是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率,由對(duì)立事件的概率公式即可得到隨機(jī)抽取2件產(chǎn)品,至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品的概率,判斷其是否符合生產(chǎn)要求;當(dāng)不符合要求時(shí),設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率為,可根據(jù)上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產(chǎn)品長(zhǎng)度誤差的絕對(duì)值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數(shù)學(xué)期望的估計(jì)為.(2)由(1)可知任取一件產(chǎn)品是標(biāo)準(zhǔn)長(zhǎng)度的概率為0.4,設(shè)至少有1件是標(biāo)準(zhǔn)長(zhǎng)度產(chǎn)品為事件,則,故不符合概率不小于0.8的要求.設(shè)生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率為,由題意,又,解得,所以符合要求時(shí),生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長(zhǎng)度的概率的最小值為.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的期望的求法,相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,對(duì)立事件的概率公式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解,意在考查學(xué)生的數(shù)學(xué)建模能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.19、(1)(2)【解析】
(1)利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)求出公差,從而求出,再利用等比數(shù)列的前項(xiàng)和公式即可求解.(2)由(1)求出,再利用裂項(xiàng)求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點(diǎn)睛】本題考查了等差數(shù)列、等比數(shù)列的通項(xiàng)公式、等比數(shù)列的前項(xiàng)和公式、裂項(xiàng)求和法,需熟記公式,屬于基礎(chǔ)題.20、(1)證明見(jiàn)解析(2)【解析】
(1)要證明平面,只需證明,,即可求得答案;(2)先根據(jù)已知證明四邊形為矩形,以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,求得平面的法向量為,平面的法向量,設(shè)二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點(diǎn),為軸,為軸,為軸,建立坐標(biāo)系,如圖:則:,,,,:,設(shè)平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設(shè)二面角的平面角為即二面角的正弦值為:.【點(diǎn)睛】本題主要考查了求證線(xiàn)面垂直和向量法求二面角,解題關(guān)鍵是掌握線(xiàn)面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計(jì)算能力,屬于中檔題.21、(1);(2)【解析】
(1)求出,即可求出切線(xiàn)的點(diǎn)斜式方程,整理即可;(2)的取值范圍滿(mǎn)足,,求出,當(dāng)時(shí)求出,的解,得到單調(diào)區(qū)間,極小值最小值即可.【詳解】(1)由于,此時(shí)切點(diǎn)坐標(biāo)為所以切線(xiàn)方程為.(2)由已知,故.由于,故,設(shè)由于在單調(diào)遞增同時(shí)時(shí),,時(shí),,故存在使得且當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),當(dāng)時(shí),所以當(dāng)時(shí),取得極小值,也是最小值,故由于,所以,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年電力線(xiàn)路檢修與修繕合同3篇
- 2024年電子產(chǎn)品批量采購(gòu)協(xié)議樣本版B版
- 2024年度員工出差安全教育培訓(xùn)及考核協(xié)議書(shū)2篇
- 2024年能源基礎(chǔ)設(shè)施建設(shè)項(xiàng)目合同
- 2024年購(gòu)銷(xiāo)合同標(biāo)的詳細(xì)說(shuō)明
- 基于智慧城市建設(shè)的現(xiàn)代農(nóng)業(yè)數(shù)字化平臺(tái)開(kāi)發(fā)方案
- 沉井施工合同
- 科技成果轉(zhuǎn)化與推廣作業(yè)指導(dǎo)書(shū)
- 體育賽事組織服務(wù)合同
- 2024年大數(shù)據(jù)產(chǎn)業(yè)發(fā)展合同
- 2024-2030年全球與中國(guó)汽車(chē)音頻DSP芯片組市場(chǎng)銷(xiāo)售前景及競(jìng)爭(zhēng)策略分析報(bào)告
- 2025屆廣州市高三年級(jí)調(diào)研測(cè)試(零模)數(shù)學(xué)試卷(含答案)
- 整本書(shū)閱讀《鄉(xiāng)土中國(guó)》課件 2024-2025學(xué)年統(tǒng)編版高中語(yǔ)文必修上冊(cè)
- 2025年“兩新”領(lǐng)域超長(zhǎng)期特別國(guó)債項(xiàng)目申報(bào)策略
- 2025禮品定制合同范本
- 醫(yī)院消毒隔離制度范文(2篇)
- 2024年01月11026經(jīng)濟(jì)學(xué)(本)期末試題答案
- 烘干煤泥合同范例
- 4.1.1陸地水體間的相互關(guān)系課件高中地理湘教版(2019)選擇性必修一
- 【MOOC】大學(xué)生心理學(xué)-中央財(cái)經(jīng)大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 2025年“三基”培訓(xùn)計(jì)劃
評(píng)論
0/150
提交評(píng)論