云南省保山隆陽(yáng)區(qū)2025屆高考數(shù)學(xué)押題試卷含解析_第1頁(yè)
云南省保山隆陽(yáng)區(qū)2025屆高考數(shù)學(xué)押題試卷含解析_第2頁(yè)
云南省保山隆陽(yáng)區(qū)2025屆高考數(shù)學(xué)押題試卷含解析_第3頁(yè)
云南省保山隆陽(yáng)區(qū)2025屆高考數(shù)學(xué)押題試卷含解析_第4頁(yè)
云南省保山隆陽(yáng)區(qū)2025屆高考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省保山隆陽(yáng)區(qū)2025屆高考數(shù)學(xué)押題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等差數(shù)列中,,,則數(shù)列前6項(xiàng)和為()A.18 B.24 C.36 D.722.在的展開(kāi)式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.3.已知,是兩條不重合的直線,是一個(gè)平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.若復(fù)數(shù)滿足,則()A. B. C.2 D.5.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.6.函數(shù)在的圖象大致為()A. B.C. D.7.在展開(kāi)式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.78.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長(zhǎng)為的等邊三角形,則該幾何體的體積為A. B. C. D.9.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個(gè)單位長(zhǎng)度B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度D.向右平移個(gè)單位長(zhǎng)度10.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.12011.已知復(fù)數(shù),則()A. B. C. D.212.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為_(kāi)_____.14.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為_(kāi)_______.15.設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有,則___16.函數(shù)在上的最小值和最大值分別是_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍18.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.19.(12分)在平面直角坐標(biāo)系xOy中,已知平行于x軸的動(dòng)直線l交拋物線C:于點(diǎn)P,點(diǎn)F為C的焦點(diǎn).圓心不在y軸上的圓M與直線l,PF,x軸都相切,設(shè)M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點(diǎn),過(guò)Q且垂直于的直線為,直線,分別與y軸相交于點(diǎn)A,當(dāng)線段AB的長(zhǎng)度最小時(shí),求s的值.20.(12分)某調(diào)查機(jī)構(gòu)為了了解某產(chǎn)品年產(chǎn)量x(噸)對(duì)價(jià)格y(千克/噸)和利潤(rùn)z的影響,對(duì)近五年該產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:x12345y17.016.515.513.812.2(1)求y關(guān)于x的線性回歸方程;(2)若每噸該產(chǎn)品的成本為12千元,假設(shè)該產(chǎn)品可全部賣(mài)出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)w取到最大值?參考公式:21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對(duì)于,使得成立,求的取值范圍.22.(10分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由等差數(shù)列的性質(zhì)可得,根據(jù)等差數(shù)列的前項(xiàng)和公式可得結(jié)果.【詳解】∵等差數(shù)列中,,∴,即,∴,故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.2、D【解析】

根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵?,所以含的?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開(kāi)式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,3、D【解析】

利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項(xiàng)A中直線,還可能相交或異面,選項(xiàng)B中,還可能異面,選項(xiàng)C,由條件可得或.故選:D.【點(diǎn)睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.4、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式計(jì)算.【詳解】解:由題意知,,,∴,故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法.5、D【解析】

根據(jù)題意畫(huà)出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫(huà)出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.6、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結(jié)合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項(xiàng);當(dāng)時(shí),,所以排除A選項(xiàng);當(dāng)時(shí),,排除D選項(xiàng);綜上可知,C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎(chǔ)題.7、D【解析】

求出展開(kāi)項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問(wèn)題得解?!驹斀狻空归_(kāi)項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開(kāi)式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開(kāi)式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。8、C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長(zhǎng)為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.9、D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因?yàn)?,所以只需將的圖象向右平移個(gè)單位.【點(diǎn)睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.10、A【解析】

對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。11、C【解析】

根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.12、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)復(fù)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對(duì)函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運(yùn)用直線的點(diǎn)斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點(diǎn)睛】本題考查運(yùn)用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點(diǎn)處的切線方程,關(guān)鍵在于求出在切點(diǎn)處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.14、【解析】

根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【點(diǎn)睛】本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問(wèn)題,是基礎(chǔ)題.15、【解析】

利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果。【詳解】由,令,得,解得?!军c(diǎn)睛】本題主要考查行列式定義的應(yīng)用。16、【解析】

求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)零點(diǎn)分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時(shí),,解得;若時(shí),,解得;若時(shí),,解得;故不等式的解集為.(2)由,有,得,故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法以及不等式恒成立問(wèn)題,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.18、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個(gè)復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計(jì)算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點(diǎn):1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.19、(1),(2).【解析】

根據(jù)題意設(shè),可得PF的方程,根據(jù)距離即可求出;點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),根據(jù)導(dǎo)數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值.【詳解】因?yàn)閽佄锞€C的方程為,所以F的坐標(biāo)為,設(shè),因?yàn)閳AM與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點(diǎn),則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設(shè),,,由知,點(diǎn)Q處的切線的斜率存在,由對(duì)稱性不妨設(shè),由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即AB取得最小值此時(shí).【點(diǎn)睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)最值的關(guān)系,考查了運(yùn)算能力和轉(zhuǎn)化能力,屬于難題.20、(1)(2)當(dāng)時(shí),年利潤(rùn)最大.【解析】

(1)方法一:令,先求得關(guān)于的回歸直線方程,由此求得關(guān)于的回歸直線方程.方法二:根據(jù)回歸直線方程計(jì)算公式,計(jì)算出回歸直線方程.方法一的好處在計(jì)算的數(shù)值較小.(2)求得w的表達(dá)式,根據(jù)二次函數(shù)的性質(zhì)作出預(yù)測(cè).【詳解】(1)方法一:取,則得與的數(shù)據(jù)關(guān)系如下123457.06.55.53.82.2,,,.,,關(guān)于的線性回歸方程是即,故關(guān)于的線性回歸方程是.方法二:因?yàn)?,,,,,所以,故關(guān)于的線性回歸方程是,(2)年利潤(rùn),根據(jù)二次函數(shù)的性質(zhì)可知:當(dāng)時(shí),年利潤(rùn)最大.【點(diǎn)睛】本小題主要考查回歸直線方程的求法,考查利用回歸直線方程進(jìn)行預(yù)測(cè),考查運(yùn)算求解能力,屬于中檔題.21、(1)當(dāng)時(shí),在上增;當(dāng)時(shí),在上減,在上增(2)【解析】

(1)求出導(dǎo)函數(shù),分類討論確定的正負(fù),確定單調(diào)區(qū)間;(2)題意說(shuō)明,利用導(dǎo)數(shù)求出的最小值,由(1)可得的最小值,從而得出結(jié)論.【詳解】解:(1)定義域?yàn)楫?dāng)時(shí),即在上增;當(dāng)時(shí),即得得綜上所述,當(dāng)時(shí),在上增;當(dāng)時(shí),在上減,在上增(2)由題在上增由(1)當(dāng)時(shí),在上增,所以此時(shí)無(wú)最小值;當(dāng)時(shí),在上減,在上增,即,解得綜上【點(diǎn)睛】本題考查用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查不等式恒成立問(wèn)題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想,本題恒成立問(wèn)題轉(zhuǎn)化為,求出兩函數(shù)的最小值后可得結(jié)論.22、(1)證明見(jiàn)解析(2)【解析】

(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點(diǎn),由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論