版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
西藏省重點中學2025屆高考數學一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.2.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.的展開式中,含項的系數為()A. B. C. D.4.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.15.已知等差數列的前項和為,且,則()A.45 B.42 C.25 D.366.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.47.為虛數單位,則的虛部為()A. B. C. D.8.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知數列對任意的有成立,若,則等于()A. B. C. D.10.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°11.將函數圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.12.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中第項與第項的二項式系數相等,則__________.14.在中,內角所對的邊分別是,若,,則__________.15.我國古代名著《張丘建算經》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).16.設是公差不為0的等差數列的前項和,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.18.(12分)若數列前n項和為,且滿足(t為常數,且)(1)求數列的通項公式:(2)設,且數列為等比數列,令,.求證:.19.(12分)設函數.(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.20.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.21.(12分)已知數列滿足,且.(1)求證:數列是等差數列,并求出數列的通項公式;(2)求數列的前項和.22.(10分)已知橢圓的中心在坐標原點,其短半軸長為,一個焦點坐標為,點在橢圓上,點在直線上的點,且.證明:直線與圓相切;求面積的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.2、C【解析】
先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發(fā)現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.3、B【解析】
在二項展開式的通項公式中,令的冪指數等于,求出的值,即可求得含項的系數.【詳解】的展開式通項為,令,得,可得含項的系數為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.4、B【解析】
根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B【點睛】本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.5、D【解析】
由等差數列的性質可知,進而代入等差數列的前項和的公式即可.【詳解】由題,.故選:D【點睛】本題考查等差數列的性質,考查等差數列的前項和.6、A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.7、C【解析】
利用復數的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.8、C【解析】
根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.9、B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.10、C【解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.11、D【解析】
根據函數圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規(guī)律以及其有關性質,基礎題.12、A【解析】依題意,基本事件的總數有種,兩個人參加同一個小組,方法數有種,故概率為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據的展開式中第項與第項的二項式系數相等,得到,再利用組合數公式求解.【詳解】因為的展開式中第項與第項的二項式系數相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數,還考查了運算求解的能力,屬于基礎題.14、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數的基本關系式,考查兩角和的正弦公式,考查三角形的內角和定理,屬于中檔題.15、213892【解析】
根據題意畫出圖形,利用棱錐與棱臺的結構特征求出正四棱臺的高,再計算它的體積.【詳解】如圖所示:正四棱錐P-ABCD的下底邊長為二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱臺ABCD-A'B'C'D',且上底邊長為A'B'=6尺,所以,解得,所以該正四棱臺的體積是,故答案為:21;3892.【點睛】本題考查了棱錐與棱臺的結構特征與應用問題,也考查了棱臺的體積計算問題,屬于中檔題.16、18【解析】
先由,可得,再結合等差數列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數列基本量的運算,重點考查了等差數列的前項和公式,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)取中點,連接,根據菱形的性質,結合線面垂直的判定定理和性質進行證明即可;(2)根據面面垂直的判定定理和性質定理,可以確定點到直線的距離即為點到平面的距離,結合垂線段的性質可以確定點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.利用空間向量夾角公式,結合同角的三角函數關系式進行求解即可.【詳解】(1)證明:取中點,連接,因為四邊形為菱形且.所以,因為,所以,又,所以平面,因為平面,所以.同理可證,因為,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以點到直線的距離即為點到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點,因為為中點,所以此時,點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.則所以平面的一個法向量為,設平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點睛】本題考查了線面垂直的判定定理和性質的應用,考查了二面角的向量求法,考查了推理論證能力和數學運算能力.18、(1)(2)詳見解析【解析】
(1)利用可得的遞推關系,從而可求其通項.(2)由為等比數列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質可證.【詳解】(1)由題意,得:(t為常數,且),當時,得,得.由,故,,故.(2)由,由為等比數列可知:,又,故,化簡得到,所以或(舍).所以,,則.設的前n項和為.則,相減可得【點睛】數列的通項與前項和的關系式,我們常利用這個關系式實現與之間的相互轉化.數列求和關鍵看通項的結構形式,如果通項是等差數列與等比數列的和,則用分組求和法;如果通項是等差數列與等比數列的乘積,則用錯位相減法;如果通項可以拆成一個數列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現,則用并項求和法.19、(1)或;(2)或.【解析】試題分析:(1)根據絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.20、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.21、(1)證明見解析,;(2).【解析】
(1)將等式變形為,進而可證明出是等差數列,確定數列的首項和公差,可求得的表達式,進而可得出數列的通項公式;(2)利用錯位相減法可求得數列的前項和.【詳解】(1)因為,所以,即,所以數列是等差數列,且公差,其首項所以,解得;(2),①,②①②,得,所以.【點睛】本題考查利用遞推公式證明等差數列,同時也考查了錯位相減法求和,考查推理能力與計算能力,屬于中等題.22、證明見解析;1.【解析】
由題意可得橢圓的方程為,由點在直線上,且知的斜率必定存在,分類討論當的斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 定金合同簽訂技巧
- 科技期刊經營模式創(chuàng)新
- 網絡安全行政人員聘用合同
- 娛樂場所電梯井道施工合同
- 智慧城市監(jiān)控施工合同模板
- 2024年綠色建筑認證施工單位勞動合同范本3篇
- 綠色建筑評價投標書
- 員工培訓合同范本
- 醫(yī)療意外處理協(xié)議
- 2024年跨境電商擔保免責合同模板3篇
- 中小學鐵路安全知識主題教育課件
- DB32T 4337-2022 可燃性粉塵除塵系統(tǒng)安全驗收規(guī)范
- 《國畫基礎》教案
- 三菱伺服電機
- 工程施工安全交底
- 中班聽課記錄15篇
- GB/T 8750-2022半導體封裝用金基鍵合絲、帶
- 體育科學研究方法學習通課后章節(jié)答案期末考試題庫2023年
- 2023天津市和平區(qū)七年級上學期語文期末試卷及答案
- 校園藝術節(jié)比賽評分表
- 挖機租賃協(xié)議(通用6篇)
評論
0/150
提交評論