版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆福建省南安市國光中學高三沖刺模擬數(shù)學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.2.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或3.如圖是計算值的一個程序框圖,其中判斷框內(nèi)應填入的條件是()A.B.C.D.4.從5名學生中選出4名分別參加數(shù)學,物理,化學,生物四科競賽,其中甲不能參加生物競賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.965.已知集合,將集合的所有元素從小到大一次排列構成一個新數(shù)列,則()A.1194 B.1695 C.311 D.10956.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.37.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.8.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.9.設(是虛數(shù)單位),則()A. B.1 C.2 D.10.黨的十九大報告明確提出:在共享經(jīng)濟等領域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.11.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.12.已知函數(shù)(其中,,)的圖象關于點成中心對稱,且與點相鄰的一個最低點為,則對于下列判斷:①直線是函數(shù)圖象的一條對稱軸;②點是函數(shù)的一個對稱中心;③函數(shù)與的圖象的所有交點的橫坐標之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)14.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.15.已知a,b均為正數(shù),且,的最小值為________.16.函數(shù)的極大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()在定義域內(nèi)有兩個不同的極值點.(1)求實數(shù)的取值范圍;(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數(shù)的取值范圍.18.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.19.(12分)選修4-5:不等式選講設函數(shù)f(x)=|x-a|,a<0.(1)證明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求20.(12分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數(shù)記為.(1)求的分布列及數(shù)學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.21.(12分)已知數(shù)列滿足(),數(shù)列的前項和,(),且,.(1)求數(shù)列的通項公式:(2)求數(shù)列的通項公式.(3)設,記是數(shù)列的前項和,求正整數(shù),使得對于任意的均有.22.(10分)已知是公比為的無窮等比數(shù)列,其前項和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.3、B【解析】
根據(jù)計算結果,可知該循環(huán)結構循環(huán)了5次;輸出S前循環(huán)體的n的值為12,k的值為6,進而可得判斷框內(nèi)的不等式.【詳解】因為該程序圖是計算值的一個程序框圈所以共循環(huán)了5次所以輸出S前循環(huán)體的n的值為12,k的值為6,即判斷框內(nèi)的不等式應為或所以選C【點睛】本題考查了程序框圖的簡單應用,根據(jù)結果填寫判斷框,屬于基礎題.4、D【解析】因甲不參加生物競賽,則安排甲參加另外3場比賽或甲學生不參加任何比賽①當甲參加另外3場比賽時,共有?=72種選擇方案;②當甲學生不參加任何比賽時,共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點睛:本題以選擇學生參加比賽為載體,考查了分類計數(shù)原理、排列數(shù)與組合數(shù)公式等知識,屬于基礎題.5、D【解析】
確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎.解題關鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.6、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質(zhì)可構造方程求得,進而求得結果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質(zhì)的應用,關鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.7、A【解析】
由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數(shù)據(jù)求得外接球的半徑是解答本題的關鍵.8、A【解析】
由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.9、A【解析】
先利用復數(shù)代數(shù)形式的四則運算法則求出,即可根據(jù)復數(shù)的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復數(shù)代數(shù)形式的四則運算法則的應用,以及復數(shù)的模計算公式的應用,屬于容易題.10、D【解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.11、D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.12、C【解析】分析:根據(jù)最低點,判斷A=3,根據(jù)對稱中心與最低點的橫坐標求得周期T,再代入最低點可求得解析式為,依次判斷各選項的正確與否.詳解:因為為對稱中心,且最低點為,所以A=3,且由所以,將帶入得,所以由此可得①錯誤,②正確,③當時,,所以與有6個交點,設各個交點坐標依次為,則,所以③正確所以選C點睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過求得的解析式進一步研究函數(shù)的性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、y=2x【解析】試題分析:當x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數(shù)的奇偶性、解析式及導數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當x>0時,函數(shù)y=f(x),則當x<0時,求函數(shù)的解析式”.有如下結論:若函數(shù)f(x)為偶函數(shù),則當x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).14、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關系的應用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.15、【解析】
本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.16、【解析】
先求函的定義域,再對函數(shù)進行求導,再解不等式得單調(diào)區(qū)間,進而求得極值點,即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減,當時,函數(shù)取到極大值,極大值為.故答案為:.【點睛】本題考查利用導數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意定義域優(yōu)先法則的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)求導得到有兩個不相等實根,令,計算函數(shù)單調(diào)區(qū)間得到值域,得到答案.(2),是方程的兩根,故,化簡得到,設函數(shù),討論范圍,計算最值得到答案.【詳解】(1)由題可知有兩個不相等的實根,即:有兩個不相等實根,令,,,,;,,故在上單增,在上單減,∴.又,時,;時,,∴,即.(2)由(1)知,,是方程的兩根,∴,則因為在單減,∴,又,∴即,兩邊取對數(shù),并整理得:對恒成立,設,,,當時,對恒成立,∴在上單增,故恒成立,符合題意;當時,,時,∴在上單減,,不符合題意.綜上,.【點睛】本題考查了根據(jù)極值點求參數(shù),恒成立問題,意在考查學生的計算能力和綜合應用能力.18、(1);(2)見解析.【解析】
(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達定理,根據(jù)已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯(lián)立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點的問題,考查計算能力,屬于中等題.19、(1)見解析.(1)(-1,0).【解析】試題分析:(1)直接計算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分區(qū)間討論去絕對值符號分別解不等式即可.試題解析:(1)證明:函數(shù)f(x)=|x﹣a|,a<2,則f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.當x≤a時,f(x)=a﹣x+a﹣1x=1a﹣3x,則f(x)≥﹣a;當a<x<時,f(x)=x﹣a+a﹣1x=﹣x,則﹣<f(x)<﹣a;當x時,f(x)=x﹣a+1x﹣a=3x﹣1a,則f(x)≥﹣.則f(x)的值域為[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即為>﹣,解得,a>﹣1,由于a<2,則a的取值范圍是(-1,0).考點:1.含絕對值不等式的證明與解法.1.基本不等式.20、(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.21、(1)().(2),.(3)【解析】
(1)依題意先求出,然后根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學教師辭職申請書合集五篇
- 中國人壽實習報告五篇
- 高中生社會實踐報告集錦15篇
- 學生細節(jié)決定成敗演講稿匯編9篇
- 2023物業(yè)年度工作報告5篇
- 公司員工部門2022年度工作計劃例文
- 時間主題演講稿15篇
- 教科版小學四年級下冊科學全冊教案設計
- 住在茶園的詩句
- 入學報名住房合同(2篇)
- 山東省濱州市2023-2024學年高一上學期1月期末考試 政治 含答案
- 電力行業(yè)電力調(diào)度培訓
- 【MOOC】氣排球-東北大學 中國大學慕課MOOC答案
- 全力以赴備戰(zhàn)期末-2024-2025學年上學期備戰(zhàn)期末考試主題班會課件
- 《慶澳門回歸盼祖國統(tǒng)一》主題班會教案
- 物流公司自然災害、突發(fā)性事件應急預案(2篇)
- 《視頻拍攝與制作:短視頻?商品視頻?直播視頻(第2版)》-課程標準
- 公司戰(zhàn)略與風險管理戰(zhàn)略實施
- 2024年-2025年《農(nóng)作物生產(chǎn)技術》綜合知識考試題庫及答案
- 洗衣房工作人員崗位職責培訓
- 廣東省深圳市光明區(qū)2022-2023學年五年級上學期數(shù)學期末試卷(含答案)
評論
0/150
提交評論