版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧葫蘆島協(xié)作校2025屆高三壓軸卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.2.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.3.將函數(shù)的圖像向左平移個單位長度后,得到的圖像關(guān)于坐標原點對稱,則的最小值為()A. B. C. D.4.設(shè)曲線在點處的切線方程為,則()A.1 B.2 C.3 D.45.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且6.體育教師指導4個學生訓練轉(zhuǎn)身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉(zhuǎn)”,若4個學生全部轉(zhuǎn)到面朝正北方向,則至少需要“向后轉(zhuǎn)”的次數(shù)是()A.3 B.4 C.5 D.67.已知且,函數(shù),若,則()A.2 B. C. D.8.在聲學中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.9.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.10.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.11.集合,,則()A. B. C. D.12.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務(wù)巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.14.設(shè)為銳角,若,則的值為____________.15.設(shè)向量,,且,則_________.16.已知,為虛數(shù)單位,且,則=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.18.(12分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調(diào)區(qū)間.19.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計如表:AQI空氣質(zhì)量優(yōu)良輕度污染中度污染重度污染重度污染天數(shù)61418272510(1)從空氣質(zhì)量指數(shù)屬于[0,50],(50,100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質(zhì)量對應的概率以表中100天的空氣質(zhì)量的頻率代替.(i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質(zhì)量造成的經(jīng)濟損失總額的數(shù)學期望是否會超過2.88萬元?說明你的理由.20.(12分)已知函數(shù).(1)解不等式;(2)使得,求實數(shù)的取值范圍.21.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).22.(10分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點在線段上移動(不與重合),是的中點.(1)當四面體的外接球的表面積為時,證明:.平面(2)當四面體的體積最大時,求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.2、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數(shù)取值范圍的求法,屬于基礎(chǔ)題.3、B【解析】
由余弦的二倍角公式化簡函數(shù)為,要想在括號內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關(guān)于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.4、D【解析】
利用導數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數(shù)的幾何意義,考查運算求解能力,是基礎(chǔ)題5、B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.6、B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉(zhuǎn)的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉(zhuǎn)”第2次“向后轉(zhuǎn)”第3次“向后轉(zhuǎn)”第4次“向后轉(zhuǎn)”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構(gòu)造較為巧妙,可通過列舉的方法直觀感受,屬于基礎(chǔ)題.7、C【解析】
根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應用,由分段函數(shù)解析式求自變量.8、D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當時,,∴,當時,,∴,∴,故選:D.【點睛】本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.9、C【解析】
由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎(chǔ)題.10、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.11、A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.12、B【解析】
根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據(jù)排列組合進行計算即可.【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用即可建立關(guān)于的方程.【詳解】設(shè)雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關(guān)鍵是建立的方程或不等式,是一道容易題.14、【解析】
∵為銳角,,∴,∴,,故.15、【解析】
根據(jù)向量的數(shù)量積的計算,以及向量的平方,簡單計算,可得結(jié)果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標計算,主要考查計算,屬基礎(chǔ)題.16、4【解析】
解:利用復數(shù)相等,可知由有.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設(shè)平面的一個法向量為,結(jié)合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設(shè)平面的一個法向量為,由,取,得.設(shè)直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記18、(1);(2)見解析【解析】
(1)對函數(shù)進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進行求導,對實數(shù)進行分類討論,可以求出函數(shù)的單調(diào)區(qū)間.【詳解】(1)當時,函數(shù)定義域為,,所以切線方程為;(2)當時,函數(shù)定義域為,在上單調(diào)遞增當時,恒成立,函數(shù)定義域為,又在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,函數(shù)定義域為,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增當時,設(shè)的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數(shù)的定義域為,又對稱軸,且,在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數(shù)的導數(shù)討論函數(shù)的單調(diào)性問題,考查了分類思想.19、(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】
(1)利用組合進行計算以及概率表示,可得結(jié)果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結(jié)果.(ii)由(i)的條件結(jié)合7月與8月空氣質(zhì)量所對應的概率,可得7月與8月經(jīng)濟損失的期望和,最后7月、8月、9月經(jīng)濟損失總額的數(shù)學期望與2.88萬元比較,可得結(jié)果.【詳解】(1)設(shè)ξ為選取的3天中空氣質(zhì)量為優(yōu)的天數(shù),則P(ξ=2),P(ξ=3),則這3天中空氣質(zhì)量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經(jīng)濟損失的數(shù)學期望為30E(X),即30E(X)=9060元,設(shè)7月、8月每天因空氣質(zhì)量造成的經(jīng)濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質(zhì)量造成經(jīng)濟損失總額的數(shù)學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質(zhì)量造成經(jīng)濟損失總額的數(shù)學期望會超過2.88萬元.【點睛】本題考查概率中的分布列以及數(shù)學期望,屬基礎(chǔ)題。20、(1);(2)或.【解析】
(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實數(shù)的取值范圍.【詳解】(1)因為,所以當時,;當時,無解;當時,;綜上,不等式的解集為;(2),又,或.【點睛】本題考查分段函數(shù),絕對值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問題,屬于中檔題.21、(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度知識產(chǎn)權(quán)糾紛調(diào)解及仲裁服務(wù)合同3篇
- 2024年智能硬件產(chǎn)品代運營合作協(xié)議范本3篇
- 算術(shù)運算單元alu的設(shè)計課課程設(shè)計
- 2024年環(huán)保節(jié)能產(chǎn)品三方購銷合同范本3篇
- 2024年度房產(chǎn)買賣及房產(chǎn)產(chǎn)權(quán)代理合同書3篇
- 福建品牌營銷課程設(shè)計
- 礦場集輸課程設(shè)計
- 2024年有債務(wù)離婚協(xié)議書范本大全:債務(wù)清償與財產(chǎn)分配策略3篇
- 液壓機課程設(shè)計單缸
- 小班新年禮物課程設(shè)計
- 期末復習資料(知識清單)-2024-2025學年外研版(三起)英語四年級上冊
- 2024年統(tǒng)編版小學六年級《道德與法治》上冊第三單元 我們的國家機構(gòu) 7.《權(quán)力受到制約和監(jiān)督》 第二課時教學設(shè)計
- 雙方共用消防通道協(xié)議書
- 綠化租擺服務(wù)投標方案(技術(shù)標)
- 整本書閱讀《鄉(xiāng)土中國》議題思辨:無訟之“訟”教學設(shè)計 中職語文高教版基礎(chǔ)模塊下冊
- 水利水電移民安置驗收資料目錄、工作報告、驗收報告、有關(guān)表格
- 建設(shè)工程強制性條文匯編2024
- Unit 1 - Unit 6 知識點(知識清單)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 2024 AI專題:從模型視角看端側(cè)AI模型技術(shù)持續(xù)演進交互體驗有望升級
- 地質(zhì)勘探合同書范例
- 特種設(shè)備每月安全調(diào)度會議紀要
評論
0/150
提交評論