慈利一中高三數(shù)學(xué)試卷_第1頁(yè)
慈利一中高三數(shù)學(xué)試卷_第2頁(yè)
慈利一中高三數(shù)學(xué)試卷_第3頁(yè)
慈利一中高三數(shù)學(xué)試卷_第4頁(yè)
慈利一中高三數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

慈利一中高三數(shù)學(xué)試卷一、選擇題

1.若函數(shù)\(f(x)=x^3-3x^2+4x+6\)的圖像與直線\(y=kx+b\)相切于點(diǎn)\(P(a,f(a))\),則\(k\)和\(b\)的值分別為:

A.\(k=3,b=0\)

B.\(k=3,b=6\)

C.\(k=6,b=0\)

D.\(k=6,b=6\)

2.已知函數(shù)\(f(x)=\frac{1}{x}\)在定義域內(nèi)的一個(gè)區(qū)間上單調(diào)遞增,那么這個(gè)區(qū)間的長(zhǎng)度為:

A.0

B.無(wú)窮大

C.1

D.2

3.設(shè)\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\),\(B=\begin{bmatrix}2&3\\4&5\end{bmatrix}\),則\(A\cdotB\)的值為:

A.\(\begin{bmatrix}8&11\\14&19\end{bmatrix}\)

B.\(\begin{bmatrix}9&12\\15&20\end{bmatrix}\)

C.\(\begin{bmatrix}10&13\\16&21\end{bmatrix}\)

D.\(\begin{bmatrix}11&14\\17&22\end{bmatrix}\)

4.若\(\log_2(x+3)=\log_2(4x-1)\),則\(x\)的值為:

A.1

B.2

C.3

D.4

5.設(shè)\(f(x)=\sqrt{x}\),\(g(x)=\frac{1}{\sqrt{x}}\),則\(f(x)+g(x)\)的值域?yàn)椋?/p>

A.\([0,+\infty)\)

B.\((0,+\infty)\)

C.\((0,1]\)

D.\([0,1]\)

6.已知\(\triangleABC\)的內(nèi)角\(A,B,C\)的對(duì)邊分別為\(a,b,c\),且\(a=5,b=6,c=7\),則\(\cosA\)的值為:

A.\(\frac{1}{2}\)

B.\(\frac{1}{3}\)

C.\(\frac{1}{4}\)

D.\(\frac{1}{5}\)

7.若\(a,b,c\)是等差數(shù)列,且\(a+b+c=15\),則\(abc\)的最大值為:

A.27

B.36

C.45

D.54

8.設(shè)\(\log_3(x-1)=\log_3(2x+1)\),則\(x\)的值為:

A.2

B.3

C.4

D.5

9.若\(f(x)=ax^2+bx+c\)在\(x=1\)處有極值,則\(a,b,c\)的關(guān)系為:

A.\(b^2-4ac=0\)

B.\(b^2-4ac>0\)

C.\(b^2-4ac<0\)

D.\(b^2+4ac=0\)

10.設(shè)\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\),\(B=\begin{bmatrix}2&3\\4&5\end{bmatrix}\),則\(A+B\)的值為:

A.\(\begin{bmatrix}3&5\\7&9\end{bmatrix}\)

B.\(\begin{bmatrix}4&6\\8&10\end{bmatrix}\)

C.\(\begin{bmatrix}5&7\\9&11\end{bmatrix}\)

D.\(\begin{bmatrix}6&8\\10&12\end{bmatrix}\)

二、判斷題

1.在實(shí)數(shù)范圍內(nèi),任意兩個(gè)實(shí)數(shù)的乘積都大于0。()

2.一個(gè)函數(shù)的導(dǎo)數(shù)存在,則該函數(shù)在該點(diǎn)可導(dǎo)。()

3.在平面直角坐標(biāo)系中,點(diǎn)到直線的距離公式為\(d=\frac{|Ax+By+C|}{\sqrt{A^2+B^2}}\)。()

4.等差數(shù)列的通項(xiàng)公式為\(a_n=a_1+(n-1)d\)。()

5.任意一個(gè)二次函數(shù)的圖像都是拋物線。()

三、填空題

1.函數(shù)\(f(x)=2x^3-6x^2+9x-1\)的導(dǎo)數(shù)為\(f'(x)=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡(jiǎn)答題

1.簡(jiǎn)述函數(shù)\(f(x)=\frac{x^2-4x+3}{x-1}\)的性質(zhì),包括定義域、值域、單調(diào)性、奇偶性以及極值點(diǎn)。

2.給定一個(gè)二次方程\(ax^2+bx+c=0\),其中\(zhòng)(a\neq0\),請(qǐng)簡(jiǎn)述如何判斷該方程的根的情況(有兩個(gè)實(shí)根、一個(gè)實(shí)根或無(wú)實(shí)根)。

3.簡(jiǎn)述在平面直角坐標(biāo)系中,如何根據(jù)兩點(diǎn)坐標(biāo)\((x_1,y_1)\)和\((x_2,y_2)\)求出兩點(diǎn)之間的距離。

4.請(qǐng)簡(jiǎn)述等差數(shù)列和等比數(shù)列的定義,并給出它們的通項(xiàng)公式。

5.簡(jiǎn)述如何利用導(dǎo)數(shù)判斷函數(shù)的極值點(diǎn)。

五、計(jì)算題

1.計(jì)算函數(shù)\(f(x)=3x^2-2x+1\)在\(x=2\)處的導(dǎo)數(shù)值。

2.解方程組:

\[

\begin{cases}

2x+3y=8\\

4x-y=2

\end{cases}

\]

3.求函數(shù)\(f(x)=\sqrt{x-1}+\frac{1}{\sqrt{x-1}}\)的導(dǎo)數(shù)。

4.已知\(\triangleABC\)中,\(a=3\),\(b=4\),\(c=5\),求\(\cosA\)的值。

5.設(shè)\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\),\(B=\begin{bmatrix}2&3\\4&5\end{bmatrix}\),計(jì)算\(A\cdotB\)的值。

六、案例分析題

1.案例背景:某公司生產(chǎn)一種產(chǎn)品,其成本函數(shù)為\(C(x)=1000+4x\),其中\(zhòng)(x\)為生產(chǎn)數(shù)量,銷售價(jià)格為每件\(20\)元。

案例分析:

(1)請(qǐng)計(jì)算當(dāng)生產(chǎn)\(500\)件產(chǎn)品時(shí),總成本是多少?

(2)如果公司希望利潤(rùn)最大化,請(qǐng)計(jì)算公司應(yīng)該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn)。

(3)假設(shè)市場(chǎng)需求函數(shù)為\(D(x)=30-x\),請(qǐng)計(jì)算公司的收入函數(shù)\(R(x)\)。

2.案例背景:某班級(jí)有\(zhòng)(30\)名學(xué)生,其中\(zhòng)(20\)名男生,\(10\)名女生。班級(jí)的平均成績(jī)?yōu)閈(75\)分。

案例分析:

(1)假設(shè)男生的平均成績(jī)?yōu)閈(80\)分,女生的平均成績(jī)?yōu)閈(70\)分,請(qǐng)計(jì)算班級(jí)中男女生人數(shù)的比例。

(2)如果班級(jí)中女生的平均成績(jī)提高\(yùn)(5\)分,而男生的平均成績(jī)不變,請(qǐng)重新計(jì)算班級(jí)的平均成績(jī)。

(3)假設(shè)班級(jí)中男女生的人數(shù)比例保持不變,但平均成績(jī)提高\(yùn)(5\)分,請(qǐng)計(jì)算新的班級(jí)平均成績(jī)。

七、應(yīng)用題

1.應(yīng)用題:某工廠生產(chǎn)一批產(chǎn)品,每件產(chǎn)品的生產(chǎn)成本為\(10\)元,固定成本為\(500\)元。若每件產(chǎn)品的售價(jià)為\(15\)元,求工廠的盈虧平衡點(diǎn)(即收入等于成本時(shí)的產(chǎn)量)。

2.應(yīng)用題:一個(gè)長(zhǎng)方體的長(zhǎng)、寬、高分別為\(x\)米、\(y\)米、\(z\)米,其體積\(V=xyz\)為\(120\)立方米。若長(zhǎng)方體的表面積\(S=2(xy+yz+zx)\)最小,求長(zhǎng)方體的尺寸。

3.應(yīng)用題:一家公司在社交媒體上推廣新產(chǎn)品,其推廣效果可以用函數(shù)\(f(t)=1000+50t-0.5t^2\)表示,其中\(zhòng)(t\)為推廣時(shí)間(以天為單位)。請(qǐng)計(jì)算在推廣的第\(10\)天和第\(20\)天,公司的推廣效果。

4.應(yīng)用題:一個(gè)班級(jí)有\(zhòng)(40\)名學(xué)生,其中\(zhòng)(60\%\)的學(xué)生參加了數(shù)學(xué)競(jìng)賽,\(40\%\)的學(xué)生參加了物理競(jìng)賽,\(30\%\)的學(xué)生同時(shí)參加了數(shù)學(xué)和物理競(jìng)賽。請(qǐng)計(jì)算:

(1)只參加數(shù)學(xué)競(jìng)賽的學(xué)生人數(shù);

(2)只參加物理競(jìng)賽的學(xué)生人數(shù);

(3)既沒(méi)有參加數(shù)學(xué)也沒(méi)有參加物理競(jìng)賽的學(xué)生人數(shù)。

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題

1.B.\(k=3,b=6\)

2.C.1

3.A.\(\begin{bmatrix}8&11\\14&19\end{bmatrix}\)

4.C.3

5.B.\((0,+\infty)\)

6.B.\(\frac{1}{3}\)

7.B.36

8.B.3

9.A.\(b^2-4ac=0\)

10.B.\(\begin{bmatrix}4&6\\8&10\end{bmatrix}\)

二、判斷題

1.×

2.√

3.√

4.√

5.√

三、填空題

1.\(f'(x)=6x^2-12x+9\)

2.\(x=\frac{1}{2}\)

3.\(d=\

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論