版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆阜新市重點中學(xué)高三最后一卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.2.拋物線的焦點為,點是上一點,,則()A. B. C. D.3.向量,,且,則()A. B. C. D.4.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.5.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.6.已知拋物線的焦點為,過焦點的直線與拋物線分別交于、兩點,與軸的正半軸交于點,與準線交于點,且,則()A. B.2 C. D.37.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.8.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.129.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.11.若集合,,則()A. B. C. D.12.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.282二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.15.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.16.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學(xué)生的成績,并根據(jù)這1000名學(xué)生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內(nèi)的學(xué)生共有____人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時,游戲停止,記得分的概率和為.①求;②當(dāng)時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.18.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對角線將折起,使點A到達點P,點M,N分別在直線,上,且A,B,M,N四點共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.19.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若時不等式成立,求的取值范圍.20.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.21.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實數(shù)解,求a的取值范圍.22.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.【點睛】本題考查古典概型概率,解題關(guān)鍵是求出基本事件的個數(shù).2、B【解析】
根據(jù)拋物線定義得,即可解得結(jié)果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎(chǔ)題.3、D【解析】
根據(jù)向量平行的坐標運算以及誘導(dǎo)公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數(shù)以及誘導(dǎo)公式的應(yīng)用,屬于中檔題.4、A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A【點睛】本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.5、B【解析】
根據(jù)拋物線方程求得焦點坐標和準線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.6、B【解析】
過點作準線的垂線,垂足為,與軸交于點,由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進而求得結(jié)果.【詳解】過點作準線的垂線,垂足為,與軸交于點,由拋物線解析式知:,準線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.7、A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.8、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B9、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為010、C【解析】
結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項進行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.11、B【解析】
根據(jù)正弦函數(shù)的性質(zhì)可得集合A,由集合性質(zhì)表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.【點睛】本題考查了集合關(guān)系的判斷與應(yīng)用,集合的包含關(guān)系與補集關(guān)系的應(yīng)用,屬于中檔題.12、B【解析】
將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當(dāng)時等號成立,又因為在內(nèi)有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.14、①②③【解析】
由已知分別結(jié)合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.15、【解析】
設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當(dāng)時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.16、750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】
(1)變量的所有可能取值為4,5,6,7,8,分別求出對應(yīng)的概率,進而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時,,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點睛】本題考查離散型隨機變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計算求解能力與推理論證能力,屬于中檔題.18、(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點,然后利用建系,計算以及平面的一個法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因為,所以,因為//,且A、B、M、N四點共面,所以//平面.又平面平面,所以//.而,.(2)因為平面平面,且,所以平面,,因為,所以平面,,因為,平面與平面夾角為,所以,在中,易知N為的中點,如圖,建立空間直角坐標系,則,,,,,,,,設(shè)平面的一個法向量為,則由,令,得.設(shè)與平面所成角為,則.【點睛】本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.19、(1);(2)【解析】分析:(1)將代入函數(shù)解析式,求得,利用零點分段將解析式化為,然后利用分段函數(shù),分情況討論求得不等式的解集為;(2)根據(jù)題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結(jié)果.詳解:(1)當(dāng)時,,即故不等式的解集為.(2)當(dāng)時成立等價于當(dāng)時成立.若,則當(dāng)時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關(guān)絕對值不等式的解法,以及含參的絕對值的式子在某個區(qū)間上恒成立求參數(shù)的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數(shù),從而將不等式轉(zhuǎn)化為多個不等式組來解決,關(guān)于第二問求參數(shù)的取值范圍時,可以應(yīng)用題中所給的自變量的范圍,去掉一個絕對值符號,之后進行分類討論,求得結(jié)果.20、(1)證明見解析(2)【解析】
(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設(shè)平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為【點睛】本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.21、(1)當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年外研銜接版五年級語文上冊月考試卷含答案
- 2025年人教版七年級物理上冊月考試卷
- 二零二五年度職業(yè)學(xué)校小賣部經(jīng)營管理合同3篇
- 二零二五年度瓷磚銷售區(qū)域保護合同4篇
- 二零二五年度化妝品代銷采購合同標準3篇
- 2025年人教版PEP九年級物理上冊階段測試試卷含答案
- 2025年水電工專業(yè)培訓(xùn)與承包服務(wù)合同3篇
- 2025年新科版六年級數(shù)學(xué)下冊月考試卷含答案
- 2025年度西瓜采摘園生態(tài)旅游合作合同3篇
- 虛擬化網(wǎng)絡(luò)安全性分析-洞察分析
- 第22單元(二次函數(shù))-單元測試卷(2)-2024-2025學(xué)年數(shù)學(xué)人教版九年級上冊(含答案解析)
- 藍色3D風(fēng)工作總結(jié)匯報模板
- 安全常識課件
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末聯(lián)考化學(xué)試題(含答案)
- 2024年江蘇省導(dǎo)游服務(wù)技能大賽理論考試題庫(含答案)
- 2024年中考英語閱讀理解表格型解題技巧講解(含練習(xí)題及答案)
- 新版中國食物成分表
- 浙江省溫州市溫州中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試試題含解析
- 2024年山東省青島市中考生物試題(含答案)
- 保安公司市場拓展方案-保安拓展工作方案
- GB/T 15843.2-2024網(wǎng)絡(luò)安全技術(shù)實體鑒別第2部分:采用鑒別式加密的機制
評論
0/150
提交評論