




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河北省豐潤(rùn)車軸山中學(xué)高三3月份第一次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.2.設(shè)函數(shù),則使得成立的的取值范圍是().A. B.C. D.3.已知滿足,,,則在上的投影為()A. B. C. D.24.如圖,在中,點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn),則()A. B. C. D.5.已知復(fù)數(shù),,則()A. B. C. D.6.已知函數(shù)(其中,,)的圖象關(guān)于點(diǎn)成中心對(duì)稱,且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,則對(duì)于下列判斷:①直線是函數(shù)圖象的一條對(duì)稱軸;②點(diǎn)是函數(shù)的一個(gè)對(duì)稱中心;③函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③7.過(guò)橢圓的左焦點(diǎn)的直線過(guò)的上頂點(diǎn),且與橢圓相交于另一點(diǎn),點(diǎn)在軸上的射影為,若,是坐標(biāo)原點(diǎn),則橢圓的離心率為()A. B. C. D.8.函數(shù)(且)的圖象可能為()A. B. C. D.9.復(fù)數(shù)()A. B. C.0 D.10.在平面直角坐標(biāo)系中,銳角頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊與單位圓交于點(diǎn),則()A. B. C. D.11.已知,,,則()A. B.C. D.12.己知集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標(biāo)系中,過(guò)點(diǎn)作傾斜角為的直線,已知直線與圓相交于兩點(diǎn),則弦的長(zhǎng)等于____________.14.已知集合,則____________.15.設(shè)命題:,,則:__________.16.在四棱錐中,底面為正方形,面分別是棱的中點(diǎn),過(guò)的平面交棱于點(diǎn),則四邊形面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)曲線在點(diǎn)處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.18.(12分)已知函數(shù).(1)解不等式;(2)使得,求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過(guò)點(diǎn),斜率為的直線經(jīng)過(guò)點(diǎn),與橢圓交于,兩點(diǎn).(1)求橢圓的方程;(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.20.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.21.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.22.(10分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先求出集合N的補(bǔ)集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點(diǎn)睛】本題考查了韋恩圖表示集合,集合的交集和補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.2、B【解析】
由奇偶性定義可判斷出為偶函數(shù),由單調(diào)性的性質(zhì)可知在上單調(diào)遞增,由此知在上單調(diào)遞減,從而將所求不等式化為,解絕對(duì)值不等式求得結(jié)果.【詳解】由題意知:定義域?yàn)?,,為偶函?shù),當(dāng)時(shí),,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則在上單調(diào)遞減,由得:,解得:或,的取值范圍為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問(wèn)題;奇偶性的作用是能夠確定對(duì)稱區(qū)間的單調(diào)性,單調(diào)性的作用是能夠?qū)⒑瘮?shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,進(jìn)而化簡(jiǎn)不等式.3、A【解析】
根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點(diǎn)睛】本題考查向量的投影,屬于基礎(chǔ)題.4、B【解析】
,將,代入化簡(jiǎn)即可.【詳解】.故選:B.【點(diǎn)睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算、數(shù)乘運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道中檔題.5、B【解析】分析:利用的恒等式,將分子、分母同時(shí)乘以,化簡(jiǎn)整理得詳解:,故選B點(diǎn)睛:復(fù)數(shù)問(wèn)題是高考數(shù)學(xué)中的??紗?wèn)題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運(yùn)算,在運(yùn)算時(shí)注意符號(hào)的正、負(fù)問(wèn)題.6、C【解析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對(duì)稱中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否.詳解:因?yàn)闉閷?duì)稱中心,且最低點(diǎn)為,所以A=3,且由所以,將帶入得,所以由此可得①錯(cuò)誤,②正確,③當(dāng)時(shí),,所以與有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為,則,所以③正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過(guò)求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.7、D【解析】
求得點(diǎn)的坐標(biāo),由,得出,利用向量的坐標(biāo)運(yùn)算得出點(diǎn)的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進(jìn)而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點(diǎn).因?yàn)辄c(diǎn)在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點(diǎn)在橢圓上這一條件,圍繞求點(diǎn)的坐標(biāo)來(lái)求解,考查計(jì)算能力,屬于中等題.8、D【解析】因?yàn)?,故函?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.9、C【解析】略10、A【解析】
根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點(diǎn)在于公式的計(jì)算,識(shí)記公式,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.11、C【解析】
利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡(jiǎn)可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡(jiǎn)三角函數(shù),難度較易.12、C【解析】
先化簡(jiǎn),再求.【詳解】因?yàn)椋忠驗(yàn)?,所以,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡(jiǎn)得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、【解析】
根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.15、,【解析】
存在符號(hào)改任意符號(hào),結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對(duì)全(特)稱命題進(jìn)行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對(duì)于一般命題的否定只需直接否定結(jié)論即可.16、【解析】
設(shè)是中點(diǎn),由于分別是棱的中點(diǎn),所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點(diǎn)睛】本小題主要考查空間平面圖形面積的計(jì)算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導(dǎo)求出,對(duì)分類討論,求出的解,即可得出結(jié)論;(2)(i)由,求出的值;(ii)由(i)得所求問(wèn)題轉(zhuǎn)化為,恒成立,設(shè),,只需,根據(jù)的單調(diào)性,即可求解.【詳解】(1)當(dāng)時(shí),,即在上增;當(dāng)時(shí),,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當(dāng)時(shí),,在單調(diào)遞增,所以滿足題意;當(dāng)時(shí),,,,所以在上減,在上增,令,..在單調(diào)遞減,所以所以在上單調(diào)遞減,,綜上可知,整數(shù)的最大值為.【點(diǎn)睛】本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,涉及函數(shù)的單調(diào)性、導(dǎo)數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.18、(1);(2)或.【解析】
(1)分段討論得出函數(shù)的解析式,再分范圍解不等式,可得解集;(2)先求出函數(shù)的最小值,再建立關(guān)于的不等式,可求得實(shí)數(shù)的取值范圍.【詳解】(1)因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),無(wú)解;當(dāng)時(shí),;綜上,不等式的解集為;(2),又,或.【點(diǎn)睛】本題考查分段函數(shù),絕對(duì)值不等式的解法,以及關(guān)于函數(shù)的存在和任意的問(wèn)題,屬于中檔題.19、(1)(2)存在;實(shí)數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計(jì)算,再根據(jù),,的關(guān)系計(jì)算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點(diǎn)坐標(biāo),求出的中垂線與軸的交點(diǎn)橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點(diǎn).設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點(diǎn)為,,則,,線段的中垂線方程為:,令可得,即.,故,當(dāng)且僅當(dāng)即時(shí)取等號(hào),,且.的取值范圍是,.【點(diǎn)睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.20、【解析】
原不等式等價(jià)于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因?yàn)樵跁r(shí)恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【點(diǎn)睛】本題考查含參數(shù)的不等式的恒成立,對(duì)于此類問(wèn)題,優(yōu)先考慮參變分離,把恒成立問(wèn)題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問(wèn)題,本題屬于基礎(chǔ)題.21、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點(diǎn),點(diǎn)到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點(diǎn),則點(diǎn)到曲線的圓心的距離.∵,∴當(dāng)時(shí),d有最大值.又∵P,Q分別為曲線,曲線上動(dòng)點(diǎn),∴的最大值為.22、(1)證明見解析;(2)【解析】
(1)取AB的中點(diǎn)O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)論文答辯模版
- 初中政治面試題目及答案
- 物理磁場(chǎng)考試題及答案
- 德國(guó)集團(tuán)面試題及答案
- 2024年紡織品檢驗(yàn)員考核標(biāo)準(zhǔn)試題及答案
- oracle高級(jí)面試題目及答案
- 國(guó)學(xué)-弟子規(guī)試題及答案
- 2024年紡織品設(shè)計(jì)師相關(guān)政策解讀試題及答案
- 2024年紡織工程師考試的考綱變化試題及答案
- 2024年紡織品檢驗(yàn)員考試準(zhǔn)備心得試題及答案
- 2025年保密教育線上培訓(xùn)考試試題及答案
- 2025屆百師聯(lián)盟高三聯(lián)考模擬預(yù)測(cè)(沖刺二)語(yǔ)文試題含答案
- 高教版2023年中職教科書《語(yǔ)文》(基礎(chǔ)模塊)下冊(cè)教案全冊(cè)
- 夜班巡查記錄表
- 潛山油氣藏勘探與開發(fā)
- 水利水電工程土工合成材料應(yīng)用技術(shù)規(guī)范
- 醫(yī)藥物流項(xiàng)目可行性研究報(bào)告
- DBT29-295-2021 600MPa級(jí)高強(qiáng)鋼筋混凝土結(jié)構(gòu)技術(shù)標(biāo)準(zhǔn)
- 乳腺癌患者生命質(zhì)量測(cè)定量表FACT
- 本溪市生活垃圾焚燒發(fā)電項(xiàng)目可行性研究報(bào)告
- 基于新公共服務(wù)理論我國(guó)行政審批制度改革
評(píng)論
0/150
提交評(píng)論