陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁
陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省澄城縣城關(guān)中學(xué)2025屆高考數(shù)學(xué)考前最后一卷預(yù)測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或52.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件3.已知復(fù)數(shù),則對應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.5.的內(nèi)角的對邊分別為,已知,則角的大小為()A. B. C. D.6.已知雙曲線的右焦點(diǎn)為,過原點(diǎn)的直線與雙曲線的左、右兩支分別交于兩點(diǎn),延長交右支于點(diǎn),若,則雙曲線的離心率是()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.8.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件9.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有10.己知,,,則()A. B. C. D.11.已知非零向量,滿足,,則與的夾角為()A. B. C. D.12.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(,)的左,右焦點(diǎn)分別為,,過點(diǎn)的直線與雙曲線的左,右兩支分別交于,兩點(diǎn),若,,則雙曲線的離心率為__________.14.已知全集,集合,則______.15.將函數(shù)的圖象向左平移個單位長度,得到一個偶函數(shù)圖象,則________.16.已知函數(shù)圖象上一點(diǎn)處的切線方程為,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;(2)若,當(dāng)時(shí),函數(shù),求函數(shù)的最小值.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)已知射線與曲線交于兩點(diǎn),射線與直線交于點(diǎn),若的面積為1,求的值和弦長.19.(12分)已知函數(shù),為的導(dǎo)數(shù),函數(shù)在處取得最小值.(1)求證:;(2)若時(shí),恒成立,求的取值范圍.20.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.21.(12分)某網(wǎng)絡(luò)商城在年月日開展“慶元旦”活動,當(dāng)天各店鋪銷售額破十億,為了提高各店鋪銷售的積極性,采用搖號抽獎的方式,抽取了家店鋪進(jìn)行紅包獎勵.如圖是抽取的家店鋪元旦當(dāng)天的銷售額(單位:千元)的頻率分布直方圖.(1)求抽取的這家店鋪,元旦當(dāng)天銷售額的平均值;(2)估計(jì)抽取的家店鋪中元旦當(dāng)天銷售額不低于元的有多少家;(3)為了了解抽取的各店鋪的銷售方案,銷售額在和的店鋪中共抽取兩家店鋪進(jìn)行銷售研究,求抽取的店鋪銷售額在中的個數(shù)的分布列和數(shù)學(xué)期望.22.(10分)已知橢圓的左右焦點(diǎn)分別為,焦距為4,且橢圓過點(diǎn),過點(diǎn)且不平行于坐標(biāo)軸的直線交橢圓與兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線交軸于點(diǎn).(1)求的周長;(2)求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.2、D【解析】

充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.3、A【解析】

利用復(fù)數(shù)除法運(yùn)算化簡,由此求得對應(yīng)點(diǎn)所在象限.【詳解】依題意,對應(yīng)點(diǎn)為,在第一象限.故選A.【點(diǎn)睛】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.4、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.5、A【解析】

先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因?yàn)椋瑒t,而,所以.故選:A【點(diǎn)睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎(chǔ)題.6、D【解析】

設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,和中,利用勾股定理計(jì)算得到答案.【詳解】設(shè)雙曲線的左焦點(diǎn)為,連接,,,設(shè),則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.7、B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.8、A【解析】

畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.9、B【解析】

根據(jù)函數(shù)對稱性和單調(diào)性的關(guān)系,進(jìn)行判斷即可.【詳解】由得關(guān)于對稱,若關(guān)于對稱,則函數(shù)在上不可能是單調(diào)的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時(shí)也錯誤,不滿足條件.故錯誤的是,故選:.【點(diǎn)睛】本題主要考查函數(shù)性質(zhì)的綜合應(yīng)用,結(jié)合對稱性和單調(diào)性的關(guān)系是解決本題的關(guān)鍵.10、B【解析】

先將三個數(shù)通過指數(shù),對數(shù)運(yùn)算變形,再判斷.【詳解】因?yàn)椋?,所以,故選:B.【點(diǎn)睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.11、B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.12、C【解析】所對應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),由雙曲線的定義得出:,由得為等腰三角形,設(shè),根據(jù),可求出,得出,再結(jié)合焦點(diǎn)三角形,利用余弦定理:求出和的關(guān)系,即可得出離心率.【詳解】解:設(shè),由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設(shè),,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點(diǎn)睛】本題考查雙曲線的定義的應(yīng)用,以及余弦定理的應(yīng)用,求雙曲線離心率.14、【解析】

根據(jù)題意可得出,然后進(jìn)行補(bǔ)集的運(yùn)算即可.【詳解】根據(jù)題意知,,,,.故答案為:.【點(diǎn)睛】本題考查列舉法的定義、全集的定義、補(bǔ)集的運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)平移后關(guān)于軸對稱可知關(guān)于對稱,進(jìn)而利用特殊值構(gòu)造方程,從而求得結(jié)果.【詳解】向左平移個單位長度后得到偶函數(shù)圖象,即關(guān)于軸對稱關(guān)于對稱即:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)三角函數(shù)的對稱軸求解參數(shù)值的問題,關(guān)鍵是能夠通過平移后的對稱軸得到原函數(shù)的對稱軸,進(jìn)而利用特殊值的方式來進(jìn)行求解.16、1【解析】

求出導(dǎo)函數(shù),由切線方程得切線斜率和切點(diǎn)坐標(biāo),從而可求得.【詳解】由題意,∵函數(shù)圖象在點(diǎn)處的切線方程為,∴,解得,∴.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)的最小值為【解析】

(1)由題可得函數(shù)的定義域?yàn)椋?,?dāng)時(shí),,令,可得;令,可得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),令,可得;令,可得或,所以函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞增.綜上,當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在,上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),函數(shù)在上單調(diào)遞增.(2)方法一:當(dāng)時(shí),,,設(shè),,則,所以函數(shù)在上單調(diào)遞減,所以,當(dāng)且僅當(dāng)時(shí)取等號.當(dāng)時(shí),設(shè),則,所以,設(shè),,則,所以函數(shù)在上單調(diào)遞減,且,,所以存在,使得,所以當(dāng)時(shí),;當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)?,,所以,所以,?dāng)且僅當(dāng)時(shí)取等號.所以當(dāng)時(shí),函數(shù)取得最小值,且,故函數(shù)的最小值為.方法二:當(dāng)時(shí),,,則,令,,則,所以函數(shù)在上單調(diào)遞增,又,所以存在,使得,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,因?yàn)?,所以?dāng)時(shí),恒成立,所以當(dāng)時(shí),恒成立,所以函數(shù)在上單調(diào)遞減,所以函數(shù)的最小值為.18、(1),;(2).【解析】

(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標(biāo)方程;(2)聯(lián)立極坐標(biāo)方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標(biāo)方程為:.轉(zhuǎn)換為極坐標(biāo)方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:,化為一般式得化為極坐標(biāo)方程為:.

(2)由于,得,.所以,所以,由于,所以,所以.【點(diǎn)睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標(biāo)方程與極坐標(biāo)方程的互化,熟記公式即可,屬于??碱}型.19、(1)見解析;(2).【解析】

(1)對求導(dǎo),令,求導(dǎo)研究單調(diào)性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當(dāng)時(shí),轉(zhuǎn)化利用均值不等式即得證;當(dāng),有兩個不同的零點(diǎn),,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數(shù),因?yàn)椋?,所以,存在使得,即.所以,?dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故當(dāng)時(shí),取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當(dāng),即時(shí),為的增函數(shù),所以,,由(1)中,得,即.故滿足題意.②當(dāng),即時(shí),有兩個不同的零點(diǎn),,且,即,若時(shí),為減函數(shù),(*)若時(shí),為增函數(shù),所以的最小值為.注意到時(shí),,且此時(shí),(ⅰ)當(dāng)時(shí),,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當(dāng)時(shí),,所以,所以由(*)知時(shí),為減函數(shù),所以,不滿足時(shí),恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了利用導(dǎo)數(shù)研究函數(shù)的最值和不等式的恒成立問題,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,分類討論,數(shù)學(xué)運(yùn)算能力,屬于較難題.20、(1)(2)點(diǎn)在以為直徑的圓上【解析】

(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識,屬于中檔題.21、(1)元;(2)32家;(3)分布列見解析;【解析】

(1)根據(jù)頻率分布直方圖求出各組頻率,再由平均數(shù)公式,即可求解;(2)求出的頻率即可;(3)中的個數(shù)的所有可能取值為,,,求出可能值的概率,得到分布列,由期望公式即可求解.【詳解】(1)頻率分布直方圖銷售額的平均值為千元,所以銷售額的平均值為元;(2)不低于元的有家(3)銷售額在的店鋪有家,銷售額在的店鋪有家.選取兩家,設(shè)銷售額在的有家.則的所有可能取值為,,.,,所以的分布列為數(shù)學(xué)期望【點(diǎn)睛】本題考查應(yīng)用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論