山東省聊城市華育學(xué)校2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第1頁
山東省聊城市華育學(xué)校2025屆高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第2頁
山東省聊城市華育學(xué)校2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第3頁
山東省聊城市華育學(xué)校2025屆高三下學(xué)期一模考試數(shù)學(xué)試題含解析_第4頁
山東省聊城市華育學(xué)校2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省聊城市華育學(xué)校2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為()A.56383 B.57171 C.59189 D.612422.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.3.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.4.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.5.若函數(shù)的圖象上兩點,關(guān)于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.6.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.87.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.8.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.9.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.10.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.1211.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参铮冻鏊鎯沙?,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.12.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.14.一個算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.15.在中,已知,,則A的值是______.16.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當時,對任意的恒成立,求實數(shù)的取值范圍.18.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.19.(12分)每年的寒冷天氣都會帶熱“御寒經(jīng)濟”,以交通業(yè)為例,當天氣太冷時,不少人都會選擇利用手機上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫(℃)642網(wǎng)上預(yù)約訂單數(shù)100135150185210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測日平均氣溫為時,該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報未來5天有3天日平均氣溫不高于,若把這5天的預(yù)測數(shù)據(jù)當成真實的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計分別為:20.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.21.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.22.(10分)在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求圓的極坐標方程;(2)直線的極坐標方程是,射線與圓的交點為、,與直線的交點為,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項之和為.故選:C.【點睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。2、B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.3、D【解析】

設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因為實數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識的理解掌握水平.4、A【解析】

由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計算求解能力與推理能力,屬于基礎(chǔ)題.5、D【解析】

由題可知,可轉(zhuǎn)化為曲線與有兩個公共點,可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點,關(guān)于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運算的能力,屬于較難題.6、A【解析】

由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.7、C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.8、C【解析】

直線恒過定點,由此推導(dǎo)出,由此能求出點的坐標,從而能求出的值.【詳解】設(shè)拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質(zhì),是中檔題,解題時要注意等價轉(zhuǎn)化思想的合理運用,屬于中檔題.9、C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.10、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B11、C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.12、C【解析】

不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、或【解析】

依題意,當時,由,即,解得;當時,由,解得或(舍去).綜上,得或.14、【解析】

由程序中的變量、各語句的作用,結(jié)合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時,滿足條件,退出循環(huán),輸出的值為.故答案為:【點睛】本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識的考查.15、【解析】

根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點睛】本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.16、【解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學(xué)生基本計算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)將有兩個零點轉(zhuǎn)化為方程有兩個相異實根,令求導(dǎo),利用其單調(diào)性和極值求解;(2)將問題轉(zhuǎn)化為對一切恒成立,令,求導(dǎo),研究單調(diào)性,求出其最值即可得結(jié)果.【詳解】(1)有兩個零點關(guān)于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調(diào)遞增,在單調(diào)遞減,又當時,,當時,當時,有兩個零點時,實數(shù)的取值范圍為;(2)當時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當時,,當時,,即在遞減,在遞增,由①知函數(shù)在單調(diào)遞增即,實數(shù)的取值范圍為.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值問題,考查學(xué)生轉(zhuǎn)化能力和分析能力,是一道難度較大的題目.18、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數(shù).①當時,,故在上為增函數(shù),所以恒成立,故符合題意;②當時,由于,,根據(jù)零點存在定理,必存在,使得,由于在上為增函數(shù),故當時,,故在上為減函數(shù),所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復(fù)雜,本題屬于難題.19、(1),232;(2)【解析】

(1)根據(jù)公式代入求解;(2)先列出基本事件空間,再列出要求的事件,最后求概率即可.【詳解】解:(1)由表格可求出代入公式求出,所以,所以當時,.所以可預(yù)測日平均氣溫為時該出租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【點睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.20、(1)(2)【解析】

(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應(yīng)用,屬于中檔題.21、(1)(2)【解析】

(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論