




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年滬科新版高三數(shù)學(xué)上冊月考試卷702考試試卷考試范圍:全部知識點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共6題,共12分)1、定義在R上的函數(shù)f(x)=,則f(3)的值為()A.-1B.-2C.1D.22、已知偶函數(shù)f(x)在R上的任一取值都有導(dǎo)數(shù),且f′(1)=1,f(x+2)=f(x-2),則曲線y=f(x)在x=-5處的切線的斜率為()A.2B.-2C.1D.-13、若集合A={x|-2<x≤1},B={x|0<x≤1},則A∩B=()A.(-2,1]B.(-∞,1]C.{1}D.(0,1]4、在如圖的表格中,如果每格填上一個(gè)數(shù)后,每一橫行成等差數(shù)列,每一縱列成等比數(shù)列,那么x+y+z的值為()。2412xyzA.1B.2C.3D.45、設(shè)圖片為實(shí)數(shù),若復(fù)數(shù)則A.B.C.D.6、下列函數(shù),其中既是偶函數(shù)又在區(qū)間上單調(diào)遞減的函數(shù)為()A.B.C.D.評卷人得分二、填空題(共5題,共10分)7、若x∈[0,],則所數(shù)y=sin(2x+)的最大值為____,相應(yīng)的x值為____.8、的值是____.9、函數(shù)y=-x2+2x+3,x∈[0,3]的值域是____.10、(2014?海淀區(qū)模擬)如圖,圓O與圓O′相交于A、B兩點(diǎn),AD與AC分別是圓O與圓O′的A點(diǎn)處的切線.若BD=2BC=2,則AB=____,若∠CAB=30°,則∠COB=____.11、【題文】設(shè)則使的的值為評卷人得分三、判斷題(共6題,共12分)12、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.
(1)A={1,3,5},B={1,2,3,4,5,6}.____;
(2)A={1,3,5},B={1,3,6,9}.____;
(3)A={0},B={x|x2+1=0}.____;
(4)A={a,b,c,d},B={d,b,c,a}.____.13、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對錯(cuò))14、已知函數(shù)f(x)=4+ax-1的圖象恒過定點(diǎn)p,則點(diǎn)p的坐標(biāo)是(1,5)____.(判斷對錯(cuò))15、函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).____(判斷對錯(cuò))16、已知A={x|x=3k-2,k∈Z},則5∈A.____.17、空集沒有子集.____.評卷人得分四、證明題(共1題,共8分)18、已知0<c<b<a,求證:aabbcc>.評卷人得分五、簡答題(共1題,共7分)19、如圖,在直角梯形ABCD中,AD//BC,當(dāng)E、F分別在線段AD、BC上,且AD=4,CB=6,AE=2,現(xiàn)將梯形ABCD沿EF折疊,使平面ABFE與平面EFCD垂直。1.判斷直線AD與BC是否共面,并證明你的結(jié)論;2.當(dāng)直線AC與平面EFCD所成角為多少時(shí),二面角A—DC—E的大小是60°。評卷人得分六、綜合題(共4題,共28分)20、已知關(guān)于x的函數(shù)g(x)=-alnx,f(x)=x2+g(x),a>0時(shí),若f(x)有唯一零點(diǎn)x0,試求x0.21、在棱長為1的正方體中ABCD=A1B1C1D1,M、N分別是AC1、A1B1的中點(diǎn).點(diǎn)P在正方體的表面上運(yùn)動(dòng),則總能使MP與BN垂直的點(diǎn)P所構(gòu)成的軌跡的周長等于____.22、已知直四棱柱ABCD-A1B1C1D1體積為32;且底面四邊形ABCD為直角梯形,其中上底BC=2,下底AD=6,腰AB=2,且BC⊥AB.
(文科):
(1)求異面直線B1A與直線C1D所成角大??;
(2)求二面角A1-CD-A的大??;
(理科):
(1)求異面直線B1D與直線AC所成角大??;
(2)求點(diǎn)C到平面B1C1D的距離.23、已知函數(shù).
(1)求證:函數(shù)y=f(x)在(0;+∞)上是增函數(shù);
(2)若f(x)<2x在(1;+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)y=f(x)在[m,n]上的值域是[m,n](m≠n),求實(shí)數(shù)a的取值范圍.參考答案一、選擇題(共6題,共12分)1、A【分析】【分析】利用分段函數(shù)的性質(zhì)得到f(3)=f(2)-f(1),f(2)=f(1)-f(0),f(1)=f(0)-f(-1),由此能求出結(jié)果.【解析】【解答】解:∵函數(shù)f(x)=;
∴f(3)=f(2)-f(1)
=[f(1)-f(0)]-f(1)
=-f(0)
=-20=-1.
故選:A.2、D【分析】【分析】由f(x+2)=f(x-2)得f(x+4)=f(x),再兩邊求導(dǎo)得f′(x+4)=f′(x),結(jié)合f(x)為偶函數(shù),得到一個(gè)式子,對此式再兩邊求導(dǎo),由此和條件可求即f′(-5)的值即為所求切線的斜率.【解析】【解答】解:由題意知;由f(x+2)=f(x-2),得f(x+4)=f(x);
∵f(x)在R上可導(dǎo);
∴f′(x+4)(x+4)′=f′(x)(x)′;即f′(x+4)=f′(x)①;
∵f(x)為偶函數(shù);∴f(-x)=f(x);
∴f′(-x)(-x)′=f′(x);即f′(-x)=-f′(x)②;
∴f′(-5)=f′(-1)=-f′(1)=-1;即所求切線的斜率為-1;
故選D.3、D【分析】【分析】直接利用集合的交集的求法,求解即可.【解析】【解答】解:因?yàn)榧螦={x|-2<x≤1};B={x|0<x≤1};
所以A∩B={x|0<x≤1}.
故選D.4、B【分析】【分析】先利用每一縱列成等比數(shù)列,所以第一列的第3,4,5個(gè)數(shù)分別是,,.第三列的第3,4,5個(gè)數(shù)分別是1,,.?x=1.再利用每一橫行成等差數(shù)列求出y,z即可.【解析】【解答】解:因?yàn)槊恳豢v列成等比數(shù)列,所以第一列的第3,4,5個(gè)數(shù)分別是,,.
第三列的第3,4,5個(gè)數(shù)分別是1,,.?x=1.
又因?yàn)槊恳粰M行成等差數(shù)列,所以y=+3×=;
z=2×?z=.
所以x+y+z=2.
故選B.5、D【分析】【解析】試題分析:根據(jù)題意,由于為實(shí)數(shù),復(fù)數(shù)那么可知,1+2i=a-b+(a+b)i,可知a+b=2,a-b=1,解得故選D.考點(diǎn):復(fù)數(shù)的除法運(yùn)算【解析】【答案】D6、C【分析】【解析】
因?yàn)槭桥己瘮?shù),所以排除A,B,然后在(0,1)上遞減,則排除D,選C【解析】【答案】C二、填空題(共5題,共10分)7、略
【分析】【分析】由x∈[0,]可得2x+∈[,],結(jié)合正弦函數(shù)的圖象可得.【解析】【解答】解:∵x∈[0,],∴2x+∈[,];
∴當(dāng)2x+=即x=時(shí),函數(shù)取最大值;
故答案為:;.8、略
【分析】【分析】設(shè)=x,可得=x,解出即可.【解析】【解答】解:設(shè)=x;
則=x;
解得x=2.9、略
【分析】【分析】首先把函數(shù)y=-x2+2x+3配方,然后根據(jù)自變量x∈[0,3],求出函數(shù)的值域即可.【解析】【解答】解:y=-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4;
∵x∈[0;3];
∴-1≤x-1≤2,-4≤-(x-1)2≤0;
∴0≤-(x-1)2+4≤4
∴函數(shù)y=-x2+2x+3;x∈[0,3]的值域是[0,4].
故答案為:[0,4].10、略
【分析】【分析】由已知條件條件出△ACB∽△DAB,從而得到AB2=BC×BD,由此能求出AB;由∠CAB=30°,得到∠COB=2∠CAB=60°.【解析】【解答】解:∵AC是⊙O'的切線。
∴∠CAB=∠D(弦切角等于它夾弧所對的圓周角)
∵AD是⊙O的切線。
∴∠DAB=∠C
∴△ACB∽△DAB;
∴;
∴AB2=BC×BD=2;
∴AB=;
∵∠CAB=30°;∴∠COB=2∠CAB=60°.
故答案為:,60°.11、略
【分析】【解析】略【解析】【答案】-2三、判斷題(共6題,共12分)12、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;
(2)5∈A;而5?B,∴A不是B的子集;
(3)B=?;∴A不是B的子集;
(4)A;B兩集合的元素相同,A=B,∴A是B的子集.
故答案為:√,×,×,√.13、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對稱;
故函數(shù)y=sinx不是奇函數(shù);
故答案為:×14、√【分析】【分析】已知函數(shù)f(x)=ax-1+4,根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過的定點(diǎn).【解析】【解答】解:∵函數(shù)f(x)=ax-1+4;其中a>0,a≠1;
令x-1=0,可得x=1,ax-1=1;
∴f(x)=1+4=5;
∴點(diǎn)P的坐標(biāo)為(1;5);
故答案為:√15、×【分析】【分析】根據(jù)奇函數(shù)的定義進(jìn)行判斷即可得到答案.【解析】【解答】解:∵x∈[0;2π],定義域不關(guān)于原點(diǎn)對稱;
故函數(shù)y=sinx不是奇函數(shù);
故答案為:×16、×【分析】【分析】判斷5與集合A的關(guān)系即可.【解析】【解答】解:由3k-2=5得,3k=7,解得k=;
所以5?Z;所以5∈A錯(cuò)誤.
故答案為:×17、×【分析】【分析】根據(jù)空集的性質(zhì),分析可得空集是其本身的子集,即可得答案.【解析】【解答】解:根據(jù)題意;空集是任何集合的子集,是任何非空集合的真子集;
即空集是其本身的子集;則原命題錯(cuò)誤;
故答案為:×.四、證明題(共1題,共8分)18、略
【分析】【分析】利用0<c<b<a,結(jié)合對數(shù)函數(shù)的單調(diào)性可知lga≥lgb≥lgc,進(jìn)而利用排序不等式可證明3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc),從而可得結(jié)論.【解析】【解答】證明:∵0<c<b<a;
∴l(xiāng)ga>lgb>lgc;
據(jù)排序不等式有:
alga+blgb+clgc>blga+clgb+algc;
alga+blgb+clgc>clga+algb+blgc;
alga+blgb+clgc=alga+blgb+clgc;
上述三式相加得:
3(alga+blgb+clgc)>(a+b+c)(lga+lgb+lgc);
即lg(aabbcc)>lg(abc);
即aabbcc>.五、簡答題(共1題,共7分)19、略
【分析】
1.是異面直線,(1分)法一(反證法)假設(shè)共面為..又.這與為梯形矛盾.故假設(shè)不成立.即是異面直線.(5分)法二:在取一點(diǎn)M,使又是平行四邊形.則確定平面與是異面直線.2.法一:延長相交于N,AE=2,AD=4,BC=6,設(shè)則△NDE中,平面平面平面.過E作于H,連結(jié)AH,則.是二面角的平面角,則.(8分)此時(shí)在△EFC中,.(10分)又平面是直線與平面所成的角,.(12分)即當(dāng)直線與平面所成角為時(shí),二面角的大小為法二:面面平面.又.故可以以E為原點(diǎn),為x軸,為軸,為Z軸建立空間直角坐標(biāo)系,可求設(shè).則得平面的法向量則有可?。矫娴姆ㄏ蛄浚?分)此時(shí),.設(shè)與平面所成角為則.即當(dāng)直線AC與平面EFCD所成角的大小為時(shí),二面角的大小為.(12分)【解析】略【解析】【答案】六、綜合題(共4題,共28分)20、略
【分析】【分析】a>0時(shí),由f(1)=3知x∈(0,1)時(shí),f(x)>0,因此x0>1.又f′(x)在區(qū)間(1,+∞)上只有一個(gè)極小值點(diǎn)記為x1,由題意可知:x1即為x0.得到x02+-alnx0=0,2x03-ax0-2=0,消去a,令t1(x)=2lnx(x>1),t2(x)=1+(x>0),分別研究單調(diào)性即可得出x0的取值范圍.【解析】【解答】解:∵a>0時(shí);f(1)=3知x∈(0,1)時(shí),f(x)>0;
∴x0>1.
又f′(x)在區(qū)間(1,+∞)上只有一個(gè)極小值點(diǎn)記為x1;
且x∈(1,x1)時(shí),函數(shù)f(x)單調(diào)遞減,x∈(x1;+∞)時(shí),函數(shù)f(x)單調(diào)遞增;
由題意可知:x1即為x0.
∴f(x0)=0,f′(x0)=0;
∴x02+-alnx0=0,2x03-ax0-2=0,消去a可得:2lnx0=1+;
a>0,令t1(x)=2lnx(x>1),t2(x)=1+(x>0);
則在區(qū)間(1,+∞)上t1(x)單調(diào)遞增,t2(x)單調(diào)遞減.
t1(2)=2ln2<2×0.7=<=t2(2);
t1(3)=2ln3>2>1+=t2(3).
∴2<x0<3.21、2+【分析】【分析】取BB1的中點(diǎn)E、CC1的中點(diǎn)F,連接AE、EF、FD,則BN⊥平面AEFD,設(shè)M在平面AB1中的射影為O,過MO與平面AEFD平行的平面為α,故能使MP與BN垂直的點(diǎn)P所構(gòu)成的軌跡為矩形,其周長與矩形AEFD的周長相等.【解析】【解答】解:取BB1的中點(diǎn)E、CC1的中點(diǎn)F;連接AE;EF、FD,則BN⊥平面AEFD
設(shè)M在平面AB1中的射影為O;過MO與平面AEFD平行的平面為α
∴能使MP與BN垂直的點(diǎn)P所構(gòu)成的軌跡為矩形;其周長與矩形AEFD的周長相等。
∵正方體ABCD=A1B1C1D1的棱長為1
∴矩形AEFD的周長為2+
故答案為:2+22、略
【分析】【分析】(文科)(1)本題圖形中出現(xiàn)了同一點(diǎn)出發(fā)的三條兩兩垂直的線段;故可以建立空間坐標(biāo)系用向量法求解,寫出要用的點(diǎn)的坐標(biāo),得到對應(yīng)的異面直線的方向向量,根據(jù)向量所成的角得到結(jié)果.
(2)設(shè)出一個(gè)平面的法向量;根據(jù)向量垂直的條件,得到法向量的坐標(biāo)之間的關(guān)系,寫出其中一個(gè),另一個(gè)平面上的法向量可以看出法向量,根據(jù)兩個(gè)向量所成的角得到二面角.
(理科)(1)本題圖形中出現(xiàn)了同一點(diǎn)出發(fā)的三條兩兩垂直的線段;故可以建立空間坐標(biāo)系用向量法求解,寫出要用的點(diǎn)的坐標(biāo),得到對應(yīng)的異面直線的方向向量,根據(jù)向量所成的角得到結(jié)果.
(2)根據(jù)三棱錐D-B1C1C的體積易得,故可用等體積法求解,由于VD-B1C1C=VC-B1C1D,點(diǎn)D到面B1C1C的距離是2,三角形B1C1C的面積是4,又點(diǎn)D到線B1C1的距離為2,故三角形DB1C1的面積可得,代入求出點(diǎn)到面的距離【解析】【解答】解:直四棱柱ABCD-A1B1C1D1體積為32;且底面四邊形ABCD為直角梯形,其中上底BC=2,下底AD=6,腰AB=2,故可解得此棱柱的高是4
如圖,以AB所在直線為X軸,以AD所在直線為Y軸,以AA1所在直線為Z軸建立空間坐標(biāo)系,由上知A(0,0,0),B(2,0,0),C(2,2,0),D(0,6,0),A1(0,0,4),B1(2,0,4),C1(2,2,4),D1(0;6,4)
(文科):
(1)由題意=(-2,0,-4),=(-2;4,-4)
兩向量夾角的余弦值為=
故兩直線所成的角為arccos
(2)由于面ACD是坐標(biāo)平面,故其法向量可設(shè)為(0,0,1),令平面A1CD的法向量是=(x,y,z),由于=(-2,4,0),=(2;2,-4);
又,故有,令y=1,則x=2,z=1,故=(2;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 茶葉訂單合同協(xié)議書
- 高三寒假奮戰(zhàn)協(xié)議書
- 門面解約合同協(xié)議書
- 腦部醫(yī)學(xué)成像技術(shù)
- 飯店風(fēng)險(xiǎn)責(zé)任協(xié)議書
- 長期采購委托協(xié)議書
- 魚池轉(zhuǎn)讓合同協(xié)議書
- 伯利收購切爾西協(xié)議書
- 食堂簽訂安全協(xié)議書
- 音樂培訓(xùn)合作協(xié)議書
- 遠(yuǎn)程培訓(xùn)學(xué)習(xí)總結(jié)(4篇)
- 全息照相與信息光學(xué)實(shí)驗(yàn)報(bào)告
- 2022年02月上海鐵路局下屬鐵路疾病預(yù)防控制所公開招聘畢業(yè)生筆試參考題庫含答案解析
- 激光設(shè)備買賣合同模板(2篇)
- GB/T 24815-2009起重用短環(huán)鏈吊鏈等用6級普通精度鏈
- 線描畫基本功教學(xué)課件
- 船上投訴程序(中英文)
- DB37-T 3781-2019 政務(wù)服務(wù)中心能源消耗定額標(biāo)準(zhǔn)-(高清版)
- 重癥胰腺炎(1)課件
- 科學(xué)素養(yǎng)全稿ppt課件(完整版)
- 克拉潑改進(jìn)型電容三點(diǎn)式振蕩器
評論
0/150
提交評論