版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專項(xiàng)突破二三角函數(shù)與解三角形解答題考點(diǎn)一三角函數(shù)的性質(zhì)與圖象的綜合應(yīng)用[對點(diǎn)訓(xùn)練1](2024北京房山模擬)已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π.(1)求ω的值;(2)再從條件①、條件②、條件③三個(gè)條件中選擇一個(gè)作為已知,確定f(x)的解析式.設(shè)函數(shù)g(x)=f(x)-2sin2x,求g(x)的單調(diào)遞增區(qū)間.考點(diǎn)二正弦定理、余弦定理及綜合應(yīng)用(多考向探究預(yù)測)考向1求三角形中的邊與角例2(2023新高考Ⅱ,17)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC面積為,D為BC的中點(diǎn),且AD=1.(1)若∠ADC=,求tanB;(2)若b2+c2=8,求b,c.[對點(diǎn)訓(xùn)練2](2024四川成都模擬)已知△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,(a+b)·(sinB-sinA)=c[sin(A+B)-sinA].(1)求角B;解
(1)因?yàn)?a+b)(sin
B-sin
A)=c[sin(A+B)-sin
A],所以(a+b)(sin
B-sin
A)=c[sin(π-C)-sin
A],即(a+b)(sin
B-sin
A)=c(sin
C-sin
A),由正弦定理可得(a+b)(b-a)=c(c-a),所以b2-a2=c2-ac,即a2+c2-b2=ac,考向2與面積有關(guān)的解三角形問題例3(2023全國甲,文17)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知[對點(diǎn)訓(xùn)練3](2024廣東梅州二模)在△ABC中,內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,acosB-bsinA=c,c=2,(1)求A的大小;(2)點(diǎn)D在BC上,①當(dāng)AD⊥AB,且AD=1時(shí),求AC的長;②當(dāng)BD=2DC,且AD=1時(shí),求△ABC的面積S△ABC.考向3解三角形中的證明問題例4(2022全國乙,理17)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinCsin(A-B)=sinBsin(C-A).(1)證明:2a2=b2+c2;(2)若a=5,cosA=,求△ABC的周長.(1)證明
∵sin
Csin(A-B)=sin
Bsin(C-A),∴sin
Csin
Acos
B-sin
Csin
Bcos
A=sin
Bsin
Ccos
A-sin
Bsin
Acos
C,[對點(diǎn)訓(xùn)練4](2024陜西安康模擬)已知銳角三角形ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,其中(1)求證:B=2C;(2)已知點(diǎn)M在線段AC上,且∠ABM=∠CBM,求BM的取值范圍.由余弦定理得b2=a2+c2-2accos
B,整理得c=a-2ccos
B.由正弦定理得sin
C=sin
A-2sin
Ccos
B,故sin
C=sin(B+C)-2sin
Ccos
B,即sin
C=sin
Bcos
C+sin
Ccos
B-2sin
Ccos
B,整理得sin
C=sin(B-C),(2)解
因?yàn)辄c(diǎn)M在線段AC上,且∠ABM=∠CBM,即BM平分∠ABC,又∠ABC=2C,所以C=∠CBM,則∠BMC=π-C-∠CBM=π-2C.考向4解三角形中的最值與范圍問題例5已知四邊形ABCD內(nèi)接于圓O,AB=2,∠ADB=30°,∠BAD是鈍角.(1)求AC的最大值;(2)若BD=2,求四邊形ABCD周長的最大值.延伸探究(變結(jié)論)在例5(2)的條件下,求△BCD面積的最大值.解
設(shè)BC=x,CD=y,因?yàn)椤螧CD=60°,在△BCD中,由余弦定理得12=x2+y2-xy≥2xy-xy=xy,即xy≤12,當(dāng)且僅當(dāng)x=y=6時(shí),等號成立,考點(diǎn)三解三角形的實(shí)際應(yīng)用例6(2024安徽合肥三模)如圖,某人開車在山腳下水平公路上自A向B行駛,山腳與公路處于同一水平面上.在A處測得山頂P處的仰角∠PAO=30°,該車以45km/h的速度勻速行駛4分鐘后,到達(dá)B處,此時(shí)測得山頂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)軟裝方案設(shè)計(jì)與全球采購一體化協(xié)議版B版
- 專業(yè)項(xiàng)目融資策略咨詢服務(wù)協(xié)議典范版A版
- 「全面」樣本協(xié)議指南(2024修訂版)版B版
- 重點(diǎn)傳染病知識培訓(xùn)課件
- 2025年度廠房灰土施工與綠色建筑認(rèn)證合同3篇
- 2025年度城市核心區(qū)拆遷房買賣合同書4篇
- 2025年度智能穿戴設(shè)備陳列展示與銷售合同范本4篇
- 2025年創(chuàng)新型廠房抵押擔(dān)保投資合同4篇
- 二零二五版打井空壓機(jī)租賃及風(fēng)險(xiǎn)控制協(xié)議3篇
- 2024鋁單板生產(chǎn)設(shè)備采購與租賃合同
- 2024年高標(biāo)準(zhǔn)農(nóng)田建設(shè)土地承包服務(wù)協(xié)議3篇
- 閱讀理解(專項(xiàng)訓(xùn)練)-2024-2025學(xué)年湘少版英語六年級上冊
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合試卷(含答案)
- 無創(chuàng)通氣基本模式
- 飛行原理(第二版) 課件 第4章 飛機(jī)的平衡、穩(wěn)定性和操縱性
- 暨南大學(xué)珠海校區(qū)財(cái)務(wù)辦招考財(cái)務(wù)工作人員易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識 CCAA年度確認(rèn) 試題與答案
- GC2級壓力管道安裝質(zhì)量保證體系文件編寫提綱
- 預(yù)應(yīng)力混凝土簡支小箱梁大作業(yè)計(jì)算書
- 燃燒機(jī)論文定型機(jī)加熱論文:天然氣直燃熱風(fēng)技術(shù)在定型機(jī)中的應(yīng)用
評論
0/150
提交評論