下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
自覺遵守考場紀(jì)律如考試作弊此答卷無效密自覺遵守考場紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁渤海船舶職業(yè)學(xué)院《三維設(shè)計基礎(chǔ)》
2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機(jī)視覺的圖像增強(qiáng)任務(wù)中,假設(shè)要提高一張低光照圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級,但可能會導(dǎo)致細(xì)節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時也會模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對于低光照圖像效果不佳D.所有的圖像增強(qiáng)方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量2、在計算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,目標(biāo)可能會被遮擋、變形或快速移動。假設(shè)要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應(yīng)對這種復(fù)雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法3、在一個基于計算機(jī)視覺的無人駕駛系統(tǒng)中,需要對道路場景進(jìn)行理解和預(yù)測,例如判斷前方是否有行人橫穿馬路。為了實(shí)現(xiàn)準(zhǔn)確的場景理解和預(yù)測,以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實(shí)例分割C.場景圖生成D.以上都是4、在計算機(jī)視覺中,三維重建是從二維圖像恢復(fù)物體的三維結(jié)構(gòu)。以下關(guān)于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結(jié)構(gòu)光或深度學(xué)習(xí)方法進(jìn)行三維重建B.三維重建在虛擬現(xiàn)實(shí)、文物保護(hù)和工業(yè)設(shè)計等領(lǐng)域有著廣泛的應(yīng)用C.三維重建的結(jié)果總是精確無誤的,能夠完全還原物體的真實(shí)三維結(jié)構(gòu)D.噪聲、遮擋和圖像質(zhì)量等因素會對三維重建的結(jié)果產(chǎn)生影響5、圖像分類是計算機(jī)視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對一組動物圖片進(jìn)行分類,區(qū)分貓、狗、兔子等。以下關(guān)于圖像分類方法的描述,哪一項是不準(zhǔn)確的?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)方法,如支持向量機(jī)(SVM),也可以用于圖像分類任務(wù)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類中取得了顯著的效果C.圖像分類只需要考慮圖像的內(nèi)容,不需要考慮圖像的拍攝角度和背景等因素D.可以通過數(shù)據(jù)增強(qiáng)技術(shù),如旋轉(zhuǎn)、裁剪、翻轉(zhuǎn)等,增加訓(xùn)練數(shù)據(jù)的多樣性6、計算機(jī)視覺中的手勢識別用于理解人的手勢動作。假設(shè)要在一個智能交互系統(tǒng)中實(shí)現(xiàn)實(shí)時準(zhǔn)確的手勢識別,以下關(guān)于手勢識別方法的描述,正確的是:()A.基于傳感器的手勢識別方法能夠精確獲取手勢的運(yùn)動信息,但佩戴傳感器不方便B.基于視覺的手勢識別方法不受環(huán)境光照和背景的影響,識別穩(wěn)定性高C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在手勢識別中無法處理復(fù)雜的手勢變化和遮擋D.手勢識別系統(tǒng)只要能夠識別常見的幾種手勢,就能夠滿足大多數(shù)應(yīng)用需求7、當(dāng)進(jìn)行視頻中的動作識別時,假設(shè)要分析一段運(yùn)動員訓(xùn)練的視頻,識別出其中的各種動作,如跑步、跳躍和舉重等。視頻中的動作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識別這些動作,以下哪種技術(shù)是關(guān)鍵的?()A.對每一幀圖像進(jìn)行獨(dú)立的動作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運(yùn)動模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時序信息,將其視為一系列獨(dú)立的圖像8、計算機(jī)視覺中的姿態(tài)估計任務(wù),確定物體在空間中的位置和方向。假設(shè)要估計一個機(jī)器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,正確的是:()A.基于幾何模型的姿態(tài)估計方法在復(fù)雜環(huán)境中總是能夠準(zhǔn)確估計姿態(tài)B.深度學(xué)習(xí)中的端到端姿態(tài)估計網(wǎng)絡(luò)不需要對物體的結(jié)構(gòu)和運(yùn)動有先驗(yàn)了解C.姿態(tài)估計的結(jié)果不受相機(jī)參數(shù)和拍攝角度的影響D.結(jié)合多種傳感器數(shù)據(jù)和深度學(xué)習(xí)的方法可以提高姿態(tài)估計的精度和魯棒性9、在計算機(jī)視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對一組包含不同視角和縮放比例的物體圖像進(jìn)行匹配,SIFT特征的哪個特性使其在這種情況下表現(xiàn)出色?()A.對旋轉(zhuǎn)和尺度變化具有不變性B.計算速度快,效率高C.特征維度低,易于存儲和處理D.對光照變化不敏感10、在計算機(jī)視覺的研究中,數(shù)據(jù)集的質(zhì)量和規(guī)模對模型的訓(xùn)練和性能評估至關(guān)重要。以下關(guān)于數(shù)據(jù)集的描述,不準(zhǔn)確的是()A.大規(guī)模、多樣化和標(biāo)注準(zhǔn)確的數(shù)據(jù)集有助于訓(xùn)練出泛化能力強(qiáng)的模型B.一些公開的數(shù)據(jù)集如ImageNet、COCO等為計算機(jī)視覺研究提供了重要的基準(zhǔn)C.數(shù)據(jù)集的構(gòu)建需要耗費(fèi)大量的時間和人力,但可以通過數(shù)據(jù)增強(qiáng)技術(shù)來減少對原始數(shù)據(jù)的需求D.數(shù)據(jù)集一旦構(gòu)建完成,就不需要再進(jìn)行更新和擴(kuò)展,能夠一直滿足研究的需求11、圖像分類是計算機(jī)視覺中的常見任務(wù)之一。對于圖像分類模型的訓(xùn)練,以下說法錯誤的是()A.需要大量有標(biāo)注的圖像數(shù)據(jù)來學(xué)習(xí)不同類別的特征B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色C.模型的訓(xùn)練過程是不斷調(diào)整參數(shù)以最小化預(yù)測誤差的過程D.圖像分類模型一旦訓(xùn)練完成,就無法再對新的類別進(jìn)行學(xué)習(xí)和分類12、在計算機(jī)視覺中,圖像去霧是提高有霧圖像質(zhì)量的技術(shù)。以下關(guān)于圖像去霧的描述,不準(zhǔn)確的是()A.圖像去霧可以基于物理模型或深度學(xué)習(xí)方法來實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像去霧中能夠有效地恢復(fù)圖像的細(xì)節(jié)和顏色C.圖像去霧只對輕度有霧的圖像有效,對于濃霧圖像效果不佳D.圖像去霧可以提高圖像的清晰度和可視性,有助于后續(xù)的處理和分析13、視頻理解是計算機(jī)視覺中的一個具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時具有優(yōu)勢C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場景下的視頻內(nèi)容,不存在任何挑戰(zhàn)14、在計算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會影響三維重建的結(jié)果15、在計算機(jī)視覺的文本檢測和識別任務(wù)中,假設(shè)要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進(jìn)行識別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識別中表現(xiàn)出色,能夠準(zhǔn)確識別各種字體和風(fēng)格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對,沒有任何困難D.可以結(jié)合光學(xué)字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋計算機(jī)視覺中的手勢識別技術(shù)。2、(本題5分)簡述計算機(jī)視覺在水利工程中的應(yīng)用。3、(本題5分)計算機(jī)視覺中如何進(jìn)行攝像機(jī)標(biāo)定?4、(本題5分)簡述圖像的多尺度分析方法。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)設(shè)計一個程序,通過計算機(jī)視覺識別不同品牌的投影儀。2、(本題5分)開發(fā)一個能夠識別不同種類蜂類的程序。3、(本題5分)通過計算機(jī)視覺,對不同類型的根雕作品進(jìn)行分類。4、(本題5分)使用計算機(jī)視覺方法,檢測機(jī)場跑道上是否有異物。5、(本題5分)利用圖像增強(qiáng)技術(shù),改善逆光拍攝圖像的質(zhì)量。四、分析題(本大題共4個小題,共40分)1、(本題10分)以某化妝品品牌的包裝設(shè)計為例,分析其外觀造型、材質(zhì)選擇、色彩搭配如何吸引消費(fèi)者,體現(xiàn)品牌的高端定位。2、(本題10分)以一個時尚品牌的時裝周秀場設(shè)計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《平衡記分卡的應(yīng)用》課件
- 《企業(yè)人力績效管理》課件
- 2024-2025學(xué)年天津市紅橋區(qū)高一上學(xué)期期中考試歷史試卷(解析版)
- 單位管理制度分享匯編人事管理
- 單位管理制度分享大全人力資源管理十篇
- 單位管理制度范例選集人力資源管理篇
- 《磺達(dá)肝癸鈉》課件
- 單位管理制度呈現(xiàn)大合集人力資源管理十篇
- 《市場營銷學(xué)案例分》課件
- 《投資經(jīng)濟(jì)學(xué)》教學(xué)大綱
- 2021年新疆烏魯木齊市中考化學(xué)一模試卷(附答案詳解)
- 張家爺爺?shù)男』ü?
- 高中思想政治-高三一輪復(fù)習(xí)講評課教學(xué)課件設(shè)計
- 自動噴水滅火系統(tǒng)的設(shè)計計算
- 教師評職稱個人綜述
- LSI-陣列卡操作手冊
- 漢字文化解密(華中師范大學(xué))超星爾雅學(xué)習(xí)通網(wǎng)課章節(jié)測試答案
- 黑龍江省哈爾濱市八年級上學(xué)期物理期末考試試卷及答案
- 商業(yè)綜合體設(shè)計說明書
- GB/T 19587-2017氣體吸附BET法測定固態(tài)物質(zhì)比表面積
- 比賽車門凹陷修復(fù)
評論
0/150
提交評論