安徽省滁州西城區(qū)中學2023-2024學年高三下-期末聯(lián)考數(shù)學試題試卷_第1頁
安徽省滁州西城區(qū)中學2023-2024學年高三下-期末聯(lián)考數(shù)學試題試卷_第2頁
安徽省滁州西城區(qū)中學2023-2024學年高三下-期末聯(lián)考數(shù)學試題試卷_第3頁
安徽省滁州西城區(qū)中學2023-2024學年高三下-期末聯(lián)考數(shù)學試題試卷_第4頁
安徽省滁州西城區(qū)中學2023-2024學年高三下-期末聯(lián)考數(shù)學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省滁州西城區(qū)中學2022-2023學年高三下-期末聯(lián)考數(shù)學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.2.若,則“”的一個充分不必要條件是A. B.C.且 D.或3.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]4.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.55.在平面直角坐標系中,已知點,,若動點滿足,則的取值范圍是()A. B.C. D.6.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.7.已知復數(shù),則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知函數(shù).下列命題:①函數(shù)的圖象關于原點對稱;②函數(shù)是周期函數(shù);③當時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④9.已知函數(shù).設,若對任意不相等的正數(shù),,恒有,則實數(shù)a的取值范圍是()A. B.C. D.10.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.4011.若,,,則下列結論正確的是()A. B. C. D.12.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤二、填空題:本題共4小題,每小題5分,共20分。13.角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點,則的值是.14.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________15.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養(yǎng)了此種盆栽植物10株,設為其中成活的株數(shù),若的方差,,則________.16.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,討論函數(shù)的零點個數(shù);(2)若在上單調遞增,且求c的最大值.18.(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.19.(12分)在創(chuàng)建“全國文明衛(wèi)生城”過程中,運城市“創(chuàng)城辦”為了調查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調查的人的得分統(tǒng)計結果如表所示:.組別頻數(shù)(1)由頻數(shù)分布表可以大致認為,此次問卷調查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求;(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應的概率為:贈送話費的金額(單位:元)概率現(xiàn)有市民甲參加此次問卷調查,記(單位:元)為該市民參加問卷調查獲贈的話費,求的分布列與數(shù)學期望.附:參考數(shù)據(jù)與公式:,若,則,,20.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設,求數(shù)列的前項和.21.(12分)設,(1)求的單調區(qū)間;(2)設恒成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導數(shù)相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

利用古典概型概率計算方法分析出符合題意的基本事件個數(shù),結合組合數(shù)的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數(shù)的計算,考查學生分析問題的能力,難度較易.2.C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.3.B【解析】

作出可行域,表示可行域內點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結論.4.D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經(jīng)常用到,可以簡化運算.5.D【解析】

設出的坐標為,依據(jù)題目條件,求出點的軌跡方程,寫出點的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結果.【詳解】設,則∵,∴∴∴為點的軌跡方程∴點的參數(shù)方程為(為參數(shù))則由向量的坐標表達式有:又∵∴故選:D【點睛】考查學生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關點法;④參數(shù)法;⑤待定系數(shù)法6.B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.7.A【解析】

利用復數(shù)除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點的坐標所在象限,屬于基礎題.8.A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當時,,,,此時與無交點;當時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導數(shù)知識的綜合應用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強,對于學生的分析和推理能力有較高要求.9.D【解析】

求解的導函數(shù),研究其單調性,對任意不相等的正數(shù),構造新函數(shù),討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數(shù)a的取值范圍是故選:D.【點睛】此題考查含參函數(shù)研究單調性問題,根據(jù)參數(shù)范圍化簡后構造新函數(shù)轉換為含參恒成立問題,屬于一般性題目.10.A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.11.D【解析】

根據(jù)指數(shù)函數(shù)的性質,取得的取值范圍,即可求解,得到答案.【詳解】由指數(shù)函數(shù)的性質,可得,即,又由,所以.故選:D.【點睛】本題主要考查了指數(shù)冪的比較大小,其中解答中熟記指數(shù)函數(shù)的性質,求得的取值范圍是解答的關鍵,著重考查了計算能力,屬于基礎題.12.B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數(shù)列,則,由此利用等差數(shù)列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數(shù)列為,設首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:由三角函數(shù)定義知,又由誘導公式知,所以答案應填:.考點:1、三角函數(shù)定義;2、誘導公式.14.【解析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.15.【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.16.2【解析】

根據(jù)為焦點,得;又求得,從而得到離心率.【詳解】為焦點在雙曲線上,則又本題正確結果:【點睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)2【解析】

(1)將代入可得,令,則,設,則轉化問題為與的交點問題,利用導函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數(shù)可得,則,即,再設,利用導函數(shù)求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調遞增,在上單調遞減,則的最大值為,且當時,;當時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調遞增,即在上恒成立,設,則,①若,則,則在上單調遞減,顯然,在上不恒成立;②若,則,在上單調遞減,當時,,故,單調遞減,不符合題意;③若,當時,,單調遞減,當時,,單調遞增,所以,由,得,設,則,當時,,單調遞減;當時,,單調遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導函數(shù)研究函數(shù)的零點問題,考查利用導函數(shù)求最值,考查運算能力與分類討論思想.18.(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設點P(x0,),由x2=2py(p>0)得,y=,求導y′=,因為直線PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因為點P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當且僅當時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+1.考點:求拋物線的方程,與拋物線有關的最值問題.19.(1)(2)詳見解析【解析】

由題意,根據(jù)平均數(shù)公式求得,再根據(jù),參照數(shù)據(jù)求解.由題意得,獲贈話費的可能取值為,求得相應的概率,列出分布列求期望.【詳解】由題意得綜上,由題意得,獲贈話費的可能取值為,,的分布列為:【點睛】本題主要考查正態(tài)分布和離散型隨機變量的分布列及期望,還考查了運算求解的能力,屬于中檔題.20.(1);(2).【解析】試題分析:(1)設等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設等差

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論