廣東生態(tài)工程職業(yè)學(xué)院《統(tǒng)計(jì)軟件操作》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
廣東生態(tài)工程職業(yè)學(xué)院《統(tǒng)計(jì)軟件操作》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
廣東生態(tài)工程職業(yè)學(xué)院《統(tǒng)計(jì)軟件操作》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
廣東生態(tài)工程職業(yè)學(xué)院《統(tǒng)計(jì)軟件操作》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
廣東生態(tài)工程職業(yè)學(xué)院《統(tǒng)計(jì)軟件操作》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)廣東生態(tài)工程職業(yè)學(xué)院《統(tǒng)計(jì)軟件操作》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是一種重要的存儲(chǔ)和管理數(shù)據(jù)的方式。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以將來(lái)自不同數(shù)據(jù)源的數(shù)據(jù)整合在一起B(yǎng).數(shù)據(jù)倉(cāng)庫(kù)可以提供高效的數(shù)據(jù)查詢和分析功能C.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)是實(shí)時(shí)更新的,反映了最新的業(yè)務(wù)狀態(tài)D.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源2、對(duì)于一個(gè)具有分類和數(shù)值型特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)處理,以下哪些步驟可能會(huì)被包括?()A.編碼分類特征B.處理異常值C.標(biāo)準(zhǔn)化數(shù)值型特征D.以上都是3、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問題。以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不正確的?()A.可以通過刪除包含大量缺失值的記錄來(lái)簡(jiǎn)化數(shù)據(jù),但可能會(huì)丟失有價(jià)值的信息B.對(duì)于錯(cuò)誤的數(shù)據(jù),可以根據(jù)數(shù)據(jù)的分布和邏輯關(guān)系進(jìn)行修正或刪除C.重復(fù)記錄的處理只需保留其中一條,對(duì)分析結(jié)果沒有實(shí)質(zhì)性影響D.數(shù)據(jù)清洗的目的是提高數(shù)據(jù)質(zhì)量,為后續(xù)的分析提供可靠的數(shù)據(jù)基礎(chǔ)4、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動(dòng)修正,無(wú)需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來(lái)填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識(shí)別并處理重復(fù)記錄、缺失值和錯(cuò)誤數(shù)據(jù),同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求5、假設(shè)要分析社交媒體上的輿論趨勢(shì),以下關(guān)于輿論分析方法的描述,正確的是:()A.只統(tǒng)計(jì)帖子的數(shù)量就能了解輿論的走向B.對(duì)帖子的內(nèi)容進(jìn)行情感分析和主題提取,綜合判斷輿論趨勢(shì)C.忽略社交媒體平臺(tái)的特點(diǎn)和用戶行為,直接進(jìn)行分析D.輿論分析不需要考慮時(shí)間因素,只關(guān)注當(dāng)前的熱門話題6、在進(jìn)行數(shù)據(jù)分析時(shí),若要檢驗(yàn)兩個(gè)總體的方差是否相等,應(yīng)使用哪種檢驗(yàn)方法?()A.F檢驗(yàn)B.t檢驗(yàn)C.卡方檢驗(yàn)D.秩和檢驗(yàn)7、數(shù)據(jù)分析中的實(shí)時(shí)數(shù)據(jù)分析要求快速處理和響應(yīng)數(shù)據(jù)。假設(shè)要構(gòu)建一個(gè)實(shí)時(shí)監(jiān)控系統(tǒng)來(lái)跟蹤網(wǎng)站的流量變化,以下關(guān)于實(shí)時(shí)數(shù)據(jù)分析技術(shù)選擇的描述,正確的是:()A.選擇傳統(tǒng)的批處理技術(shù),不考慮實(shí)時(shí)性要求B.采用復(fù)雜且難以維護(hù)的實(shí)時(shí)分析框架,不考慮實(shí)際需求和資源限制C.根據(jù)數(shù)據(jù)量、延遲要求和技術(shù)團(tuán)隊(duì)的能力,選擇合適的實(shí)時(shí)數(shù)據(jù)分析技術(shù),如Flink、KafkaStreams等,并進(jìn)行性能優(yōu)化和監(jiān)控D.認(rèn)為實(shí)時(shí)數(shù)據(jù)分析不需要考慮數(shù)據(jù)的準(zhǔn)確性和完整性8、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布和趨勢(shì),以下哪種組合的圖表較為合適?()A.直方圖和折線圖B.箱線圖和散點(diǎn)圖C.餅圖和柱狀圖D.雷達(dá)圖和樹形圖9、在數(shù)據(jù)庫(kù)中,若要優(yōu)化查詢語(yǔ)句的執(zhí)行計(jì)劃,以下哪個(gè)工具或技術(shù)可以提供幫助?()A.索引分析工具B.執(zhí)行計(jì)劃查看器C.數(shù)據(jù)庫(kù)性能監(jiān)控工具D.以上都是10、在構(gòu)建數(shù)據(jù)分析模型時(shí),特征工程起著關(guān)鍵作用。假設(shè)我們正在構(gòu)建一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,擁有房屋面積、房間數(shù)量、地理位置等原始數(shù)據(jù)。以下哪種特征工程方法可能有助于提高模型的性能?()A.對(duì)數(shù)值型特征進(jìn)行標(biāo)準(zhǔn)化處理B.忽略地理位置特征,因?yàn)樗y以量化C.直接使用原始數(shù)據(jù),不進(jìn)行任何處理D.將所有特征組合成一個(gè)綜合特征11、在數(shù)據(jù)分析中,數(shù)據(jù)分析報(bào)告是傳達(dá)分析結(jié)果的重要方式。以下關(guān)于數(shù)據(jù)分析報(bào)告的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)分析報(bào)告應(yīng)包括問題背景、分析方法、結(jié)果呈現(xiàn)和結(jié)論建議等內(nèi)容B.數(shù)據(jù)分析報(bào)告應(yīng)使用簡(jiǎn)潔明了的語(yǔ)言,避免使用專業(yè)術(shù)語(yǔ)和復(fù)雜的公式C.數(shù)據(jù)分析報(bào)告的結(jié)果應(yīng)具有客觀性和可靠性,不能帶有主觀偏見D.數(shù)據(jù)分析報(bào)告的格式和風(fēng)格可以隨意選擇,只要能表達(dá)清楚分析結(jié)果即可12、在數(shù)據(jù)庫(kù)中,若要實(shí)現(xiàn)多表之間的關(guān)聯(lián)查詢,以下哪種連接方式較為常用?()A.內(nèi)連接B.外連接C.交叉連接D.自然連接13、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)和融合時(shí),需要確保數(shù)據(jù)的一致性和準(zhǔn)確性。假設(shè)你有來(lái)自不同系統(tǒng)的銷售數(shù)據(jù)和庫(kù)存數(shù)據(jù),要進(jìn)行關(guān)聯(lián)分析。以下關(guān)于數(shù)據(jù)關(guān)聯(lián)方法的選擇,哪一項(xiàng)是最需要注意的?()A.根據(jù)共同的主鍵或標(biāo)識(shí)符進(jìn)行精確匹配關(guān)聯(lián)B.使用模糊匹配算法,允許一定程度的差異進(jìn)行關(guān)聯(lián)C.不進(jìn)行任何預(yù)處理,直接將數(shù)據(jù)合并,期望自動(dòng)關(guān)聯(lián)D.隨機(jī)選擇一種關(guān)聯(lián)方法,不考慮數(shù)據(jù)的特點(diǎn)14、在進(jìn)行數(shù)據(jù)倉(cāng)庫(kù)設(shè)計(jì)時(shí),需要考慮數(shù)據(jù)的存儲(chǔ)和組織方式。假設(shè)一個(gè)企業(yè)有大量的銷售、庫(kù)存和客戶數(shù)據(jù),以下哪種數(shù)據(jù)模型可能最適合用于構(gòu)建數(shù)據(jù)倉(cāng)庫(kù)?()A.星型模型B.雪花模型C.關(guān)系模型D.網(wǎng)狀模型15、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營(yíng)銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過簡(jiǎn)單排序就能實(shí)現(xiàn)B.為了預(yù)測(cè)未來(lái)銷售趨勢(shì),應(yīng)該使用時(shí)間序列分析方法C.分析客戶地域分布對(duì)銷售的影響時(shí),無(wú)需考慮其他因素D.要評(píng)估不同營(yíng)銷渠道的效果,只需比較銷售額的大小16、在進(jìn)行數(shù)據(jù)探索性分析時(shí),需要了解數(shù)據(jù)的分布和關(guān)系。假設(shè)要分析一個(gè)城市的房?jī)r(jià)與地理位置、房屋面積等因素的關(guān)系,以下關(guān)于探索性分析方法的描述,正確的是:()A.只繪制簡(jiǎn)單的圖表,不進(jìn)行深入的統(tǒng)計(jì)分析B.不考慮變量之間的相關(guān)性,孤立地分析每個(gè)因素C.綜合運(yùn)用數(shù)據(jù)可視化、相關(guān)性分析、分組統(tǒng)計(jì)等方法,揭示數(shù)據(jù)的潛在模式和關(guān)系,提出假設(shè)和研究方向D.忽略數(shù)據(jù)中的異常值和缺失值,認(rèn)為它們不影響分析結(jié)果17、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過程。假設(shè)一家電商企業(yè)想要通過數(shù)據(jù)挖掘來(lái)發(fā)現(xiàn)客戶的購(gòu)買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.預(yù)測(cè)分析18、在進(jìn)行數(shù)據(jù)抽樣時(shí),需要根據(jù)不同的目的選擇合適的抽樣方法。假設(shè)要對(duì)一個(gè)大型電商平臺(tái)的用戶購(gòu)買行為數(shù)據(jù)進(jìn)行抽樣,以估計(jì)總體的平均消費(fèi)金額,同時(shí)希望抽樣結(jié)果具有較好的代表性。以下哪種抽樣方法可能是最合適的?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.系統(tǒng)抽樣D.整群抽樣19、數(shù)據(jù)分析中,數(shù)據(jù)安全是至關(guān)重要的問題。以下關(guān)于數(shù)據(jù)安全的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)安全包括數(shù)據(jù)的保密性、完整性和可用性等方面B.數(shù)據(jù)安全問題可能會(huì)導(dǎo)致數(shù)據(jù)泄露、篡改和丟失等嚴(yán)重后果C.采取加密、備份和訪問控制等措施可以提高數(shù)據(jù)的安全性D.數(shù)據(jù)安全只需要在數(shù)據(jù)存儲(chǔ)和傳輸過程中關(guān)注,在數(shù)據(jù)分析過程中無(wú)需考慮20、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣的方法有很多,其中隨機(jī)抽樣是一種常用的方法。以下關(guān)于隨機(jī)抽樣的描述中,錯(cuò)誤的是?()A.隨機(jī)抽樣可以保證樣本的代表性和隨機(jī)性B.隨機(jī)抽樣可以減少數(shù)據(jù)的數(shù)量和復(fù)雜度C.隨機(jī)抽樣可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性D.隨機(jī)抽樣只適用于大規(guī)模數(shù)據(jù)集,對(duì)于小數(shù)據(jù)集無(wú)法使用21、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)是存儲(chǔ)和管理數(shù)據(jù)的重要工具。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)可以整合來(lái)自不同數(shù)據(jù)源的數(shù)據(jù),為數(shù)據(jù)分析提供統(tǒng)一的數(shù)據(jù)視圖B.數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)通常是經(jīng)過清洗和轉(zhuǎn)換的,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉(cāng)庫(kù)的建設(shè)需要投入大量的時(shí)間和資源,且維護(hù)成本較高D.數(shù)據(jù)倉(cāng)庫(kù)只適用于大型企業(yè),對(duì)于中小企業(yè)來(lái)說沒有必要建設(shè)22、數(shù)據(jù)分析中的探索性數(shù)據(jù)分析(EDA)有助于理解數(shù)據(jù)的特征和分布。假設(shè)我們正在分析一個(gè)關(guān)于股票市場(chǎng)的數(shù)據(jù)集,包括股票價(jià)格、成交量等變量。在進(jìn)行EDA時(shí),以下哪種可視化方法可能最有助于發(fā)現(xiàn)價(jià)格和成交量之間的潛在關(guān)系?()A.柱狀圖B.折線圖C.散點(diǎn)圖D.箱線圖23、假設(shè)我們正在分析客戶的購(gòu)買行為數(shù)據(jù),想要了解客戶購(gòu)買某一產(chǎn)品的頻率分布。以下哪種統(tǒng)計(jì)量最適合描述這種數(shù)據(jù)?()A.均值B.中位數(shù)C.眾數(shù)D.標(biāo)準(zhǔn)差24、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,以下哪個(gè)原則有助于提高數(shù)據(jù)庫(kù)的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引25、數(shù)據(jù)分析中,數(shù)據(jù)可視化的創(chuàng)新可以帶來(lái)更好的用戶體驗(yàn)。以下關(guān)于數(shù)據(jù)可視化創(chuàng)新的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化創(chuàng)新可以包括使用新的圖表類型、交互方式和可視化技術(shù)等B.數(shù)據(jù)可視化創(chuàng)新應(yīng)結(jié)合具體的問題和數(shù)據(jù)特點(diǎn),不能為了創(chuàng)新而創(chuàng)新C.數(shù)據(jù)可視化創(chuàng)新可以提高數(shù)據(jù)分析的效率和準(zhǔn)確性,增強(qiáng)數(shù)據(jù)的說服力D.數(shù)據(jù)可視化創(chuàng)新只需要關(guān)注技術(shù)層面,不需要考慮用戶的需求和感受26、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘是一種高級(jí)的技術(shù)。以下關(guān)于數(shù)據(jù)挖掘的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘可以從大量的數(shù)據(jù)中發(fā)現(xiàn)隱藏的模式和規(guī)律B.數(shù)據(jù)挖掘可以使用機(jī)器學(xué)習(xí)算法進(jìn)行數(shù)據(jù)的分類、聚類和預(yù)測(cè)C.數(shù)據(jù)挖掘需要專業(yè)的技術(shù)和知識(shí),對(duì)于普通用戶來(lái)說難以掌握D.數(shù)據(jù)挖掘的結(jié)果一定是準(zhǔn)確無(wú)誤的,可以直接用于決策27、在數(shù)據(jù)分析的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率B.置信度表示在包含前提項(xiàng)集的事務(wù)中同時(shí)包含結(jié)果項(xiàng)集的概率C.支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只考慮支持度和置信度就可以確定有效的關(guān)聯(lián)規(guī)則28、假設(shè)要分析一個(gè)電商平臺(tái)的用戶評(píng)論數(shù)據(jù),以提取用戶的意見和情感傾向。以下哪種自然語(yǔ)言處理技術(shù)和方法可能是關(guān)鍵的?()A.詞袋模型B.情感分析C.命名實(shí)體識(shí)別D.以上都是29、在數(shù)據(jù)分析的方差分析(ANOVA)中,以下關(guān)于組間方差和組內(nèi)方差的描述,錯(cuò)誤的是()A.組間方差反映了不同組之間的差異B.組內(nèi)方差反映了組內(nèi)個(gè)體之間的差異C.如果組間方差顯著大于組內(nèi)方差,說明不同組之間存在顯著差異D.組間方差和組內(nèi)方差的比值越大,越說明組間差異不顯著30、數(shù)據(jù)分析中的決策樹算法具有易于理解和解釋的特點(diǎn)。假設(shè)我們構(gòu)建了一個(gè)決策樹來(lái)預(yù)測(cè)客戶是否會(huì)購(gòu)買某產(chǎn)品,以下哪個(gè)因素可能影響決策樹的復(fù)雜度和準(zhǔn)確性?()A.特征選擇B.分裂準(zhǔn)則C.剪枝策略D.以上都是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在餐飲外賣領(lǐng)域,訂單數(shù)據(jù)、配送數(shù)據(jù)和用戶評(píng)價(jià)數(shù)據(jù)等日益增多。分析如何借助數(shù)據(jù)分析手段,如配送效率提升、餐廳菜品優(yōu)化等,提高餐飲外賣服務(wù)質(zhì)量,同時(shí)探討在數(shù)據(jù)隱私保護(hù)、配送人員管理和市場(chǎng)競(jìng)爭(zhēng)激烈方面可能面臨的問題及應(yīng)對(duì)方法。2、(本題5分)在文化遺產(chǎn)保護(hù)領(lǐng)域,文物的監(jiān)測(cè)數(shù)據(jù)、修復(fù)記錄數(shù)據(jù)等逐漸完善。探討如何利用數(shù)據(jù)分析方法,比如文物病害預(yù)警、保護(hù)策略制定等,加強(qiáng)文化遺產(chǎn)的保護(hù)和管理,同時(shí)研究在數(shù)據(jù)專業(yè)性強(qiáng)、技術(shù)手段有限和保護(hù)資金分配方面所面臨的困難及解決途徑。3、(本題5分)在電商退貨管理中,數(shù)據(jù)分析可以幫助降低成本和提高客戶滿意度。以某大型電商企業(yè)為例,論述如何運(yùn)用數(shù)據(jù)分析來(lái)預(yù)測(cè)退貨率、分析退貨原因、改進(jìn)產(chǎn)品質(zhì)量和服務(wù),以及如何建立有效的退貨處理流程。4、(本題5分)電信行業(yè)擁有大量的用戶通信數(shù)據(jù)和網(wǎng)絡(luò)性能數(shù)據(jù)。分析如何運(yùn)用數(shù)據(jù)分析優(yōu)化網(wǎng)絡(luò)覆蓋、提升服務(wù)質(zhì)量、進(jìn)行客戶細(xì)分和精準(zhǔn)營(yíng)銷,并討論數(shù)據(jù)分析在5G時(shí)代的新應(yīng)用和挑戰(zhàn)。5、(本題5分)在線教育的教師評(píng)價(jià)體系可以基于教學(xué)數(shù)據(jù)進(jìn)行構(gòu)建。請(qǐng)?jiān)敿?xì)闡述如何通過學(xué)生反饋、教學(xué)過程數(shù)據(jù)和教學(xué)成果來(lái)評(píng)估教師的教學(xué)質(zhì)量,為教師發(fā)展提供支持和改進(jìn)方向。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)簡(jiǎn)述數(shù)據(jù)預(yù)處理的步驟和目的,包括數(shù)據(jù)標(biāo)準(zhǔn)化、歸一化等操作,并解釋為什么數(shù)據(jù)預(yù)處理對(duì)后續(xù)分析至關(guān)重要。2、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的物化視圖的概念和作用,說明在什么情況下使用物化視圖來(lái)提高查詢性能,并舉例說明。3、(本題5分)解釋什么是生成對(duì)抗模仿學(xué)習(xí),說明其在模仿學(xué)習(xí)和數(shù)據(jù)生成中的應(yīng)用和優(yōu)勢(shì),并舉例分析。4、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論