版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)廣西安全工程職業(yè)技術(shù)學(xué)院《視覺(jué)傳達(dá)設(shè)計(jì)》
2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺(jué)中的視頻理解不僅包括對(duì)單個(gè)幀的分析,還需要考慮幀之間的關(guān)系。假設(shè)我們要理解一個(gè)電影片段的情節(jié)和情感,以下哪種方法能夠有效地捕捉視頻中的時(shí)空動(dòng)態(tài)信息和語(yǔ)義信息?()A.基于幀級(jí)特征和分類(lèi)器的方法B.基于深度學(xué)習(xí)的視頻理解模型,結(jié)合注意力機(jī)制C.基于光流和運(yùn)動(dòng)軌跡的方法D.基于音頻和視頻融合的方法2、計(jì)算機(jī)視覺(jué)在體育賽事分析中的應(yīng)用可以提供更多的數(shù)據(jù)和見(jiàn)解。假設(shè)要分析一場(chǎng)足球比賽中球員的跑動(dòng)軌跡和動(dòng)作。以下關(guān)于計(jì)算機(jī)視覺(jué)在體育賽事中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)對(duì)視頻的分析,自動(dòng)跟蹤球員的位置和運(yùn)動(dòng)軌跡B.能夠?qū)η騿T的動(dòng)作進(jìn)行分類(lèi),如傳球、射門(mén)和防守C.計(jì)算機(jī)視覺(jué)在體育賽事分析中的結(jié)果可以直接作為裁判的判罰依據(jù),無(wú)需人工復(fù)查D.可以結(jié)合多攝像頭的信息,獲取更全面和準(zhǔn)確的比賽數(shù)據(jù)3、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來(lái)。假設(shè)要對(duì)一張包含多個(gè)水果的圖像進(jìn)行精確分割,每個(gè)水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時(shí)表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測(cè)的分割D.基于深度學(xué)習(xí)的語(yǔ)義分割4、當(dāng)進(jìn)行視頻中的動(dòng)作識(shí)別時(shí),假設(shè)要分析一段運(yùn)動(dòng)員訓(xùn)練的視頻,識(shí)別出其中的各種動(dòng)作,如跑步、跳躍和舉重等。視頻中的動(dòng)作可能存在速度變化、遮擋和視角變化等問(wèn)題。為了準(zhǔn)確識(shí)別這些動(dòng)作,以下哪種技術(shù)是關(guān)鍵的?()A.對(duì)每一幀圖像進(jìn)行獨(dú)立的動(dòng)作分類(lèi),然后綜合結(jié)果B.利用光流信息來(lái)捕捉視頻中的運(yùn)動(dòng)模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時(shí)序信息,將其視為一系列獨(dú)立的圖像5、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項(xiàng)是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過(guò)程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過(guò)后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會(huì)影響三維重建的結(jié)果6、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,需要對(duì)整個(gè)圖像場(chǎng)景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車(chē)輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場(chǎng)景理解?()A.基于對(duì)象檢測(cè)和分類(lèi)的方法B.基于語(yǔ)義分割和圖模型的方法C.基于深度學(xué)習(xí)的場(chǎng)景解析網(wǎng)絡(luò)D.基于特征匹配和聚類(lèi)的方法7、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來(lái),以便醫(yī)生進(jìn)行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時(shí)可能更具優(yōu)勢(shì)?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進(jìn)行分割B.基于區(qū)域生長(zhǎng)的分割方法,從種子點(diǎn)開(kāi)始逐漸擴(kuò)展區(qū)域C.基于深度學(xué)習(xí)的語(yǔ)義分割算法,如U-NetD.隨機(jī)分割圖像,然后根據(jù)后續(xù)分析進(jìn)行調(diào)整8、在計(jì)算機(jī)視覺(jué)的圖像修復(fù)任務(wù)中,恢復(fù)圖像中缺失或損壞的部分。假設(shè)要修復(fù)一張老照片中缺失的部分,以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于紋理合成的圖像修復(fù)方法能夠完美恢復(fù)復(fù)雜的結(jié)構(gòu)和細(xì)節(jié)B.深度學(xué)習(xí)中的自編碼器在圖像修復(fù)中無(wú)法學(xué)習(xí)到有效的特征表示C.圖像修復(fù)的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗(yàn)知識(shí)和上下文信息的深度學(xué)習(xí)方法可以產(chǎn)生更合理和自然的修復(fù)效果9、在計(jì)算機(jī)視覺(jué)的實(shí)際應(yīng)用中,光照變化會(huì)對(duì)圖像的處理和分析產(chǎn)生影響。以下關(guān)于光照變化的描述,不正確的是()A.光照變化可能導(dǎo)致圖像的亮度、對(duì)比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預(yù)處理技術(shù),如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學(xué)習(xí)模型能夠自動(dòng)適應(yīng)各種光照變化,無(wú)需進(jìn)行額外的處理D.光照變化對(duì)于目標(biāo)檢測(cè)和跟蹤等任務(wù)的準(zhǔn)確性可能會(huì)產(chǎn)生較大的影響10、在計(jì)算機(jī)視覺(jué)的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型11、視頻分析是計(jì)算機(jī)視覺(jué)的一個(gè)重要領(lǐng)域。假設(shè)我們要分析一段監(jiān)控視頻,以檢測(cè)異常行為,如打架、盜竊等。對(duì)于這種實(shí)時(shí)性要求較高的視頻分析任務(wù),以下哪種方法更適合用于快速處理和檢測(cè)?()A.對(duì)每一幀圖像單獨(dú)進(jìn)行分析B.基于光流的方法跟蹤對(duì)象運(yùn)動(dòng)C.利用深度學(xué)習(xí)模型直接對(duì)視頻進(jìn)行分析D.采用傳統(tǒng)的圖像處理方法,如背景減除12、計(jì)算機(jī)視覺(jué)中的圖像風(fēng)格遷移是一項(xiàng)有趣的任務(wù)。假設(shè)要將一幅油畫(huà)的風(fēng)格應(yīng)用到一張照片上,以下關(guān)于模型訓(xùn)練的要點(diǎn),哪一項(xiàng)是不正確的?()A.學(xué)習(xí)油畫(huà)和照片的特征表示,找到風(fēng)格和內(nèi)容的分離方式B.只關(guān)注風(fēng)格的遷移,不考慮照片原始內(nèi)容的保留C.采用對(duì)抗訓(xùn)練,使生成的圖像在風(fēng)格和內(nèi)容上達(dá)到平衡D.調(diào)整模型參數(shù),控制風(fēng)格遷移的強(qiáng)度和效果13、計(jì)算機(jī)視覺(jué)中,以下哪個(gè)任務(wù)通常需要對(duì)圖像中的目標(biāo)進(jìn)行定位和分類(lèi)?()A.圖像生成B.目標(biāo)檢測(cè)C.圖像超分辨率D.圖像去噪14、圖像去模糊是計(jì)算機(jī)視覺(jué)中的一個(gè)難題。假設(shè)一張圖像由于相機(jī)抖動(dòng)而產(chǎn)生模糊,以下哪種去模糊方法可能需要對(duì)模糊核有較為準(zhǔn)確的估計(jì)?()A.基于深度學(xué)習(xí)的去模糊方法B.盲去卷積方法C.維納濾波去模糊方法D.均值濾波去模糊方法15、在計(jì)算機(jī)視覺(jué)的三維重建任務(wù)中,假設(shè)要從一組二維圖像恢復(fù)出物體的三維結(jié)構(gòu)。以下關(guān)于三維重建方法的描述,正確的是:()A.基于立體視覺(jué)的方法需要多視角的圖像,并且對(duì)相機(jī)的標(biāo)定精度要求不高B.結(jié)構(gòu)光方法能夠快速準(zhǔn)確地獲取物體表面的三維信息,但對(duì)環(huán)境光敏感C.從運(yùn)動(dòng)中恢復(fù)結(jié)構(gòu)(SfM)方法只適用于靜態(tài)場(chǎng)景,無(wú)法處理動(dòng)態(tài)物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型16、在計(jì)算機(jī)視覺(jué)的視頻理解任務(wù)中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術(shù),需要對(duì)視頻中的時(shí)空信息進(jìn)行有效建模。以下哪種方法在時(shí)空建模方面可能具有優(yōu)勢(shì)?()A.3D卷積神經(jīng)網(wǎng)絡(luò)B.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)C.注意力機(jī)制D.以上都是17、當(dāng)進(jìn)行圖像的去霧處理時(shí),假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對(duì)比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計(jì)大氣光和透射率B.對(duì)圖像進(jìn)行簡(jiǎn)單的對(duì)比度增強(qiáng)C.不進(jìn)行去霧處理,保留有霧的效果D.隨機(jī)調(diào)整圖像的亮度和飽和度18、計(jì)算機(jī)視覺(jué)中的姿態(tài)估計(jì)任務(wù)是估計(jì)人體或物體在三維空間中的姿態(tài)。假設(shè)要估計(jì)一個(gè)人體模特的姿態(tài)。以下關(guān)于姿態(tài)估計(jì)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)關(guān)鍵點(diǎn)檢測(cè)和關(guān)節(jié)角度計(jì)算來(lái)估計(jì)人體姿態(tài)B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)可以直接預(yù)測(cè)人體姿態(tài)的參數(shù)C.姿態(tài)估計(jì)在虛擬現(xiàn)實(shí)和增強(qiáng)現(xiàn)實(shí)等應(yīng)用中具有重要作用D.姿態(tài)估計(jì)的結(jié)果總是非常準(zhǔn)確,不受人體遮擋和復(fù)雜動(dòng)作的影響19、計(jì)算機(jī)視覺(jué)在工業(yè)檢測(cè)中的應(yīng)用越來(lái)越廣泛。假設(shè)要檢測(cè)電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機(jī)B.工業(yè)線陣相機(jī)C.手機(jī)攝像頭D.監(jiān)控?cái)z像頭20、在計(jì)算機(jī)視覺(jué)的圖像修復(fù)任務(wù)中,假設(shè)要修復(fù)一張有部分缺失的圖像。以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于擴(kuò)散的圖像修復(fù)方法能夠自然地填充缺失區(qū)域,但修復(fù)速度慢B.基于樣本的圖像修復(fù)方法可以快速生成修復(fù)結(jié)果,但容易出現(xiàn)重復(fù)紋理C.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像修復(fù)中無(wú)法保證修復(fù)內(nèi)容與周?chē)鷧^(qū)域的一致性D.所有的圖像修復(fù)方法都能夠完美地恢復(fù)出圖像缺失部分的真實(shí)內(nèi)容21、在計(jì)算機(jī)視覺(jué)的車(chē)牌識(shí)別任務(wù)中,需要從車(chē)輛圖像中準(zhǔn)確提取車(chē)牌號(hào)碼。假設(shè)車(chē)牌存在傾斜、變形和光照不均等問(wèn)題。以下哪種車(chē)牌識(shí)別方法在應(yīng)對(duì)這些挑戰(zhàn)時(shí)表現(xiàn)更為出色?()A.基于字符分割的車(chē)牌識(shí)別B.基于模板匹配的車(chē)牌識(shí)別C.基于深度學(xué)習(xí)的車(chē)牌識(shí)別D.基于特征提取的車(chē)牌識(shí)別22、計(jì)算機(jī)視覺(jué)中的動(dòng)作識(shí)別是對(duì)視頻中人物或物體的動(dòng)作進(jìn)行分類(lèi)和理解。假設(shè)要識(shí)別一段舞蹈視頻中的各種舞蹈動(dòng)作,同時(shí)要考慮動(dòng)作的速度、幅度和風(fēng)格的變化。以下哪種動(dòng)作識(shí)別方法在處理這種復(fù)雜的動(dòng)作模式時(shí)表現(xiàn)更好?()A.基于手工特征的動(dòng)作識(shí)別B.基于時(shí)空興趣點(diǎn)的動(dòng)作識(shí)別C.基于深度學(xué)習(xí)的時(shí)空卷積網(wǎng)絡(luò)D.基于隱馬爾可夫模型的動(dòng)作識(shí)別23、在計(jì)算機(jī)視覺(jué)的立體視覺(jué)中,需要通過(guò)兩個(gè)或多個(gè)相機(jī)獲取的圖像來(lái)計(jì)算深度信息。假設(shè)要為一個(gè)自動(dòng)駕駛汽車(chē)構(gòu)建立體視覺(jué)系統(tǒng),以測(cè)量與前方障礙物的距離,同時(shí)要考慮實(shí)時(shí)性和準(zhǔn)確性的要求。以下哪種立體匹配算法在這種應(yīng)用場(chǎng)景中表現(xiàn)最優(yōu)?()A.基于區(qū)域的匹配B.基于特征的匹配C.基于深度學(xué)習(xí)的匹配D.全局優(yōu)化匹配24、在計(jì)算機(jī)視覺(jué)的實(shí)際應(yīng)用中,模型的實(shí)時(shí)性是一個(gè)重要的考慮因素。以下關(guān)于實(shí)時(shí)性的描述,不正確的是()A.對(duì)于一些需要實(shí)時(shí)響應(yīng)的應(yīng)用,如自動(dòng)駕駛和工業(yè)檢測(cè),模型的處理速度至關(guān)重要B.模型的復(fù)雜度、計(jì)算資源和算法效率都會(huì)影響實(shí)時(shí)性C.可以通過(guò)模型壓縮、硬件加速和優(yōu)化算法等方法來(lái)提高模型的實(shí)時(shí)性D.實(shí)時(shí)性只與模型本身有關(guān),與硬件設(shè)備和系統(tǒng)架構(gòu)無(wú)關(guān)25、計(jì)算機(jī)視覺(jué)在安防監(jiān)控領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一個(gè)商場(chǎng)需要通過(guò)監(jiān)控?cái)z像頭進(jìn)行人員異常行為檢測(cè)。以下關(guān)于安防監(jiān)控中的計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不正確的?()A.可以實(shí)時(shí)監(jiān)測(cè)人群的流動(dòng)情況,發(fā)現(xiàn)擁堵和異常聚集B.能夠識(shí)別人員的打斗、摔倒等異常行為,并及時(shí)發(fā)出警報(bào)C.計(jì)算機(jī)視覺(jué)系統(tǒng)能夠完全取代人工監(jiān)控,不需要人類(lèi)保安的參與D.可以與其他安防設(shè)備(如門(mén)禁系統(tǒng))聯(lián)動(dòng),提高安防水平26、在計(jì)算機(jī)視覺(jué)的目標(biāo)識(shí)別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(jī)(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機(jī)制(AttentionMechanism)27、在計(jì)算機(jī)視覺(jué)中,圖像去霧是提高有霧圖像質(zhì)量的技術(shù)。以下關(guān)于圖像去霧的描述,不準(zhǔn)確的是()A.圖像去霧可以基于物理模型或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像去霧中能夠有效地恢復(fù)圖像的細(xì)節(jié)和顏色C.圖像去霧只對(duì)輕度有霧的圖像有效,對(duì)于濃霧圖像效果不佳D.圖像去霧可以提高圖像的清晰度和可視性,有助于后續(xù)的處理和分析28、當(dāng)利用計(jì)算機(jī)視覺(jué)進(jìn)行圖像語(yǔ)義分割任務(wù),例如將圖像中的不同物體分割出來(lái),以下哪種深度學(xué)習(xí)架構(gòu)可能在分割精度和效率方面表現(xiàn)較好?()A.FCNB.U-NetC.SegNetD.以上都是29、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺(jué)跟蹤方法能夠提供較好的長(zhǎng)期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法30、在計(jì)算機(jī)視覺(jué)的圖像配準(zhǔn)任務(wù)中,需要將不同時(shí)間或視角拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的衛(wèi)星圖像進(jìn)行精確配準(zhǔn),圖像中存在地形變化和云層遮擋。以下哪種圖像配準(zhǔn)方法在這種困難情況下能夠取得較好的效果?()A.基于特征的配準(zhǔn)B.基于灰度的配準(zhǔn)C.基于變換模型的配準(zhǔn)D.基于深度學(xué)習(xí)的配準(zhǔn)二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)設(shè)計(jì)一個(gè)基于計(jì)算機(jī)視覺(jué)的虹膜識(shí)別系統(tǒng)。2、(本題5分)使用目標(biāo)檢測(cè)技術(shù),從海洋監(jiān)測(cè)圖像中檢測(cè)出海洋垃圾的分布區(qū)域。3、(本題5分)通過(guò)圖像分類(lèi)算法,對(duì)不同種類(lèi)的寶石圖像進(jìn)行分類(lèi)。4、(本題5分)對(duì)地質(zhì)勘探圖像中的礦物質(zhì)分布進(jìn)行分析和提取。5、(本題5分)基于計(jì)算機(jī)視覺(jué)的智能交通信號(hào)燈控制系統(tǒng),根據(jù)實(shí)時(shí)交通流量調(diào)整信號(hào)燈時(shí)長(zhǎng)。三、簡(jiǎn)答題(本大題共5
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版離婚合同:兩個(gè)孩子撫養(yǎng)與財(cái)產(chǎn)分配版B版
- 2025年度文化產(chǎn)業(yè)園物業(yè)委托管理服務(wù)合同4篇
- 2025年度商用廚房設(shè)備安全檢測(cè)及認(rèn)證合同3篇
- 2025年度土地承包經(jīng)營(yíng)權(quán)流轉(zhuǎn)糾紛調(diào)解合同模板4篇
- 2025年度珠寶首飾代工定制合同范本(高品質(zhì))4篇
- 2024美甲店美甲技師勞務(wù)外包合同參考3篇
- 2025年度智能化工廠承包合同范本8篇
- 2025年度水資源綜合利用項(xiàng)目承包合作協(xié)議樣本4篇
- 2024版畫(huà)室合伙協(xié)議合同范本
- 2025年LED照明產(chǎn)品智能照明系統(tǒng)集成設(shè)計(jì)與施工合同3篇
- GB/T 33629-2024風(fēng)能發(fā)電系統(tǒng)雷電防護(hù)
- 劍橋國(guó)際少兒英語(yǔ)“第三級(jí)”單詞默寫(xiě)表
- (精心整理)高中生物必修二非選擇題專(zhuān)題訓(xùn)練
- 小學(xué)二年級(jí)100以內(nèi)進(jìn)退位加減法混合運(yùn)算
- 福建省流動(dòng)人口信息登記表
- 市委組織部副部長(zhǎng)任職表態(tài)發(fā)言
- HXD1D客運(yùn)電力機(jī)車(chē)轉(zhuǎn)向架培訓(xùn)教材
- 超星爾雅學(xué)習(xí)通【西方文論原典導(dǎo)讀(吉林大學(xué))】章節(jié)測(cè)試附答案
- 【培訓(xùn)教材】外貿(mào)會(huì)計(jì)PPT
- 《門(mén)店運(yùn)營(yíng)管理手冊(cè)》
- 應(yīng)征公民體格檢查表(征兵)
評(píng)論
0/150
提交評(píng)論