版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省黃山市屯溪區(qū)第一中學2022-2023學年教研聯(lián)合體高考模擬試卷(二)數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.2.已知且,函數(shù),若,則()A.2 B. C. D.3.“角谷猜想”的內(nèi)容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.94.已知集合,,則等于()A. B. C. D.5.若,則下列關(guān)系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.46.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.7.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度8.已知命題:“關(guān)于的方程有實根”,若為真命題的充分不必要條件為,則實數(shù)的取值范圍是()A. B. C. D.9.設(shè),,,則的大小關(guān)系是()A. B. C. D.10.設(shè)是虛數(shù)單位,則“復數(shù)為純虛數(shù)”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件11.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.12.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.14.已知集合,,則_________.15.已知平行于軸的直線與雙曲線:的兩條漸近線分別交于,兩點,為坐標原點,若為等邊三角形,則雙曲線的離心率為______.16.已知,滿足約束條件則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,設(shè).(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導函數(shù))18.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.19.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.20.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對稱軸方程.21.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.22.(10分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學化學學科的轉(zhuǎn)換分為:設(shè)該同學化學科的轉(zhuǎn)換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.682
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.2.C【解析】
根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應用,由分段函數(shù)解析式求自變量.3.B【解析】
模擬程序運行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時可模擬程序運行,觀察變量值,從而得出結(jié)論.4.A【解析】
進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎(chǔ)題.5.D【解析】
a,b可看成是與和交點的橫坐標,畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數(shù)圖象比較大小,考查學生數(shù)形結(jié)合的思想,是一道中檔題.6.A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A【點睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.7.B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.8.B【解析】命題p:,為,又為真命題的充分不必要條件為,故9.A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因為對數(shù)函數(shù)在上單調(diào)遞增,所以,因為對數(shù)函數(shù)在上單調(diào)遞減,所以,因為指數(shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.10.D【解析】
結(jié)合純虛數(shù)的概念,可得,再結(jié)合充分條件和必要條件的定義即可判定選項.【詳解】若復數(shù)為純虛數(shù),則,所以,若,不妨設(shè),此時復數(shù),不是純虛數(shù),所以“復數(shù)為純虛數(shù)”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數(shù)的概念,理解充分必要條件的邏輯關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題.11.B【解析】
采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.12.D【解析】
作,垂足為,過點N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結(jié)合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先由題意設(shè)向量的坐標,再結(jié)合平面向量數(shù)量積的運算及不等式可得解.【詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數(shù)量積的坐標運算,意在考查學生對這些知識的理解掌握水平.14.【解析】
根據(jù)交集的定義即可寫出答案?!驹斀狻?,,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。15.2【解析】
根據(jù)為等邊三角形建立的關(guān)系式,從而可求離心率.【詳解】據(jù)題設(shè)分析知,,所以,得,所以雙曲線的離心率.【點睛】本題主要考查雙曲線的離心率的求解,根據(jù)條件建立之間的關(guān)系式是求解的關(guān)鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).16.【解析】
畫出可行域,通過平移基準直線到可行域邊界位置,由此求得目標函數(shù)的最小值.【詳解】畫出可行域如下圖所示,由圖可知:可行域是由三點,,構(gòu)成的三角形及其內(nèi)部,當直線過點時,取得最小值.故答案為:【點睛】本小題主要考查利用線性規(guī)劃求目標函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想方法,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見解析【解析】
(1)求出導函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計算,代入后可得結(jié)論.【詳解】解:,函數(shù)的定義域為,.(1)當時,,由得,由得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【點睛】本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查導數(shù)的運算、方程根的知識.在可導函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.18.(1)(2)最大值.【解析】
(1)根據(jù)通徑和即可求(2)設(shè)直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設(shè)直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當且僅當,即時取得等號,即四邊形面積的最大值.【點睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.19.(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設(shè)t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.20.(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關(guān)系式的變換的應用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進一步利用正弦型函數(shù)的性質(zhì)的應用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,【點睛】本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應用,主要考查學生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.21.(1)證明見解析(2)【解析】
(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結(jié)論;(2)設(shè)分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設(shè),求解,即可得出結(jié)論.【詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設(shè)分別為邊的中點,則,(或補角)是異面直線與所成的角.設(shè)為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設(shè)則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設(shè),由,易知點的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度LED燈具安裝與節(jié)能效果評估合同3篇
- 2024糧食購銷代理合作合同版B版
- 2024薪資保密制度與員工隱私保護專項合同3篇
- 2025年度現(xiàn)代農(nóng)業(yè)土地承包種植技術(shù)引進合同3篇
- 2025年度智能大門研發(fā)與購銷合同4篇
- 2025年度數(shù)據(jù)中心能源優(yōu)化承包經(jīng)營協(xié)議4篇
- 2024水泵安裝項目施工合作合同版B版
- 2025年度五星級酒店廚師服務合同細則4篇
- 2024跨越國界的藝術(shù)品買賣合同
- 2025年度水利工程承攬工程施工合同4篇
- 銳途管理人員測評試題目的
- 焊接材料-DIN-8555-標準
- 工程索賠真實案例范本
- 重癥醫(yī)學科運用PDCA循環(huán)降低ICU失禁性皮炎發(fā)生率品管圈QCC持續(xù)質(zhì)量改進成果匯報
- 個人股權(quán)證明書
- 醫(yī)院運送工作介紹
- 重癥患者的容量管理
- 學習游戲?qū)χ行W生學業(yè)成績的影響
- 小學四年級上冊遞等式計算100題及答案
- 新版?zhèn)€人簡歷Excel表格模板共2聯(lián)
- (完整)中國象棋教案
評論
0/150
提交評論