版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第08講三角形中的對(duì)角互補(bǔ)模型【應(yīng)對(duì)方法與策略】一、雙等邊類型△BCD≌△ACE △ABD≌△ACE △BOE∽△COF二、雙等腰直角類型△BCD≌△ACE △BCE≌△DCF △ABD∽△ACE【多題一解】一.選擇題(共1小題)1.(2021秋?邗江區(qū)期末)如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)E、F,連接EF交AP于點(diǎn)G,以下五個(gè)結(jié)論:①∠B=∠C=45°;②AP=EF;③∠AFP和∠AEP互補(bǔ);④△EPF是等腰直角三角形;⑤四邊形AEPF的面積是△ABC面積的,其中正確的結(jié)論是()A.①②③ B.①②④⑤ C.①③④⑤ D.①③④【分析】利用ASA證明△AEP≌△CFP,得PE=PF,則△EPF是等腰直角三角形,再根據(jù)等腰直角三角形的性質(zhì)可對(duì)結(jié)論逐一進(jìn)行判斷.【解答】解:∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,故①正確;∵點(diǎn)P為BC的中點(diǎn),∠BAC=90°,AB=AC,∴AP=CP,∠APC=90°,∠BAP=∠C=45°,∵∠EPF=∠APC,∴∠APE=∠FPC,在△AEP和△CFP中,,∴△AEP≌△CFP(ASA),∴PE=PF,∴△EPF是等腰直角三角形,∴四邊形AEPF的面積為S△AEP+S△AFP=S△CPF+S△APF=S△APC=S△ABC,故④正確,⑤不正確;∵∠BAC=∠EPF=90°,∴∠AFP和∠AEP互補(bǔ),故③正確;∵PE不是定長(zhǎng),故②不正確.∴正確的有:①③④,故選:D.【點(diǎn)評(píng)】本題主要考查了等腰直角三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)等知識(shí),證明△AEP≌△CFP是解題的關(guān)鍵.二.填空題(共1小題)2.(2022春?高新區(qū)校級(jí)月考)如圖,將5個(gè)邊長(zhǎng)為1cm的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則5個(gè)正方形重疊形成的重疊部分的面積和為1cm2.【分析】過(guò)正方形ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,則易證△OEM≌△OFN,根據(jù)已知可求得一個(gè)陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為n﹣1陰影部分的和,即可得出結(jié)果.【解答】解:如圖,過(guò)正方形ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,則∠EOM=∠FON,OM=ON,在△OEM和△OFN中,,∴△OEM≌△OFN(ASA),則四邊形OECF的面積就等于正方形OMCN的面積,如正方形ABCD的邊長(zhǎng)是1,則OMCN的面積是cm2,∴得陰影部分面積等于正方形面積的cm2,即是cm2,∴5個(gè)這樣的正方形重疊部分(陰影部分)的面積和為×4=1cm2,故答案為:1cm2.【點(diǎn)評(píng)】考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),解決本題的關(guān)鍵是找到規(guī)律,難點(diǎn)是求得一個(gè)陰影部分的面積.三.解答題(共17小題)3.(2020?九龍坡區(qū)校級(jí)模擬)【初步探索】(1)如圖1:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且EF=BE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是∠BAE+∠FAD=∠EAF;【靈活運(yùn)用】(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且EF=BE+FD,上述結(jié)論是否仍然成立,并說(shuō)明理由;【拓展延伸】(3)如圖3,已知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點(diǎn)E在CB的延長(zhǎng)線上,點(diǎn)F在CD的延長(zhǎng)線上,如圖3所示,仍然滿足EF=BE+FD,請(qǐng)寫(xiě)出∠EAF與∠DAB的數(shù)量關(guān)系,并給出證明過(guò)程.【分析】(1)延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,可判定△ABE≌△ADG,進(jìn)而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF,據(jù)此得出結(jié)論;(2)延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先判定△ABE≌△ADG,進(jìn)而得出∠BAE=∠DAG,AE=AG,再判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)在DC延長(zhǎng)線上取一點(diǎn)G,使得DG=BE,連接AG,先判定△ADG≌△ABE,再判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根據(jù)∠FAE+∠FAG+∠GAE=360°,推導(dǎo)得到2∠FAE+∠DAB=360°,即可得出結(jié)論.【解答】解:(1)∠BAE+∠FAD=∠EAF.理由:如圖1,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,根據(jù)SAS可判定△ABE≌△ADG,進(jìn)而得出∠BAE=∠DAG,AE=AG,再根據(jù)SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案為:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如圖2,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.證明:如圖3,在DC延長(zhǎng)線上取一點(diǎn)G,使得DG=BE,連接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.【點(diǎn)評(píng)】本題屬于三角形綜合題,主要考查了全等三角形的判定以及全等三角形的性質(zhì)的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造全等三角形,根據(jù)全等三角形的對(duì)應(yīng)角相等進(jìn)行推導(dǎo)變形.解題時(shí)注意:同角的補(bǔ)角相等.4.(2022秋?鄒城市校級(jí)期末)(1)如圖①,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E,F(xiàn)分別是邊BC,CD上的點(diǎn),且∠EAF=∠BAD.請(qǐng)直接寫(xiě)出線段EF,BE,F(xiàn)D之間的數(shù)量關(guān)系:EF=BE+FD;(2)如圖②,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是邊BC,CD上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?請(qǐng)寫(xiě)出證明過(guò)程;(3)在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是邊BC,CD所在直線上的點(diǎn),且∠EAF=∠BAD.請(qǐng)直接寫(xiě)出線段EF,BE,F(xiàn)D之間的數(shù)量關(guān)系:EF=BE+FD或EF=BE﹣FD或EF=FD﹣BE.【分析】(1)如圖1,延長(zhǎng)EB到G,使BG=DF,連接AG,即可證明△ABG≌△ADF,可得AF=AG,再證明△AEF≌△AEG,可得EF=EG,即可解題;(2)如圖2,同理可得:EF=BE+DF;(3)如圖3,作輔助線,構(gòu)建△ABG,同理證明△ABG≌△ADF和△AEG≌△AEF.可得新的結(jié)論:EF=BE﹣DF.【解答】解:(1)如圖1,延長(zhǎng)EB到G,使BG=DF,連接AG.∵在△ABG與△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,易證△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(2)(1)中的結(jié)論EF=BE+FD仍然成立.理由是:如圖2,延長(zhǎng)EB到G,使BG=DF,連接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG與△ADF中,,∴△ABG≌△ADF(SAS).∴AG=AF,∠1=∠2,∴∠1+∠3=∠2+∠3=∠BAD=∠EAF.∴∠GAE=∠EAF.又AE=AE,∴△AEG≌△AEF.∴EG=EF.∵EG=BE+BG.∴EF=BE+FD(3)當(dāng)(1)結(jié)論EF=BE+FD成立,當(dāng)圖三中,EF=BE﹣FD或EF=FD﹣BE.證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG與△ADF中,,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.同理可得:∴EG=EF∵EG=BG﹣BE∴EF=FD﹣BE.故答案為:(1)EF=BE+FD;(2)成立;(3)EF=BE+FD或EF=BE﹣FD或EF=FD﹣BE.【點(diǎn)評(píng)】本題是三角形的綜合題,利用全等三角形的判定與性質(zhì)得出AF=AG是解題關(guān)鍵,再利用全等三角形的判定與性質(zhì)得出EF=EG,本題的4個(gè)問(wèn)題運(yùn)用了類比的方法依次解決問(wèn)題.5.(2021秋?九臺(tái)區(qū)期末)【教材呈現(xiàn)】如圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材96頁(yè)的部分內(nèi)容.已知:如圖13.5.4,OC是∠AOB的平分線,P是OC上任意一點(diǎn),PD⊥OA,PE⊥OB,垂足分別為點(diǎn)D和點(diǎn)E.求證:PD=PE.分析:圖中有兩個(gè)直角三角形PDO和PEO,只要證明這兩個(gè)三角形全等便可證得PD=PE.【問(wèn)題解決】請(qǐng)根據(jù)教材分析,結(jié)合圖①寫(xiě)出證明PD=PE的過(guò)程.【類比探究】(1)如圖②,OC是∠AOB的平分線,P是OC上任意一點(diǎn),點(diǎn)M,N分別在OB和OA上,連接PM和PN,若∠PMO+∠PNO=180°,求證:PM=PN;(2)如圖③,△ABC的周長(zhǎng)是12,BO、CO分別平分∠ABC和∠ACB,OD⊥BC于點(diǎn)D,若OD=3,則△ABC的面積為18.【分析】【問(wèn)題解決】利用AAS定理證明△OPE≌△OPD,根據(jù)全等三角形的性質(zhì)證明結(jié)論;【類比探究】(1)過(guò)點(diǎn)P作PE⊥OB于E,PF⊥OA于F,根據(jù)角平分線的性質(zhì)得到PE=PF,證明△PME≌△PNF,根據(jù)全等三角形的性質(zhì)證明結(jié)論;(2)過(guò)O作OE⊥AB與E,OF⊥AC于F,利用角平分線的性質(zhì)可得EO=DO,OF=DO,然后再利用面積的計(jì)算方法可得答案.【解答】【問(wèn)題解決】證明:在△OPE和△OPD中,,∴△OPE≌△OPD(AAS),∴PD=PE;【類比探究】(1)證明:如圖②,過(guò)點(diǎn)P作PE⊥OB于E,PF⊥OA于F,∵OC是∠AOB的平分線,PE⊥OB,PF⊥OA,∴PE=PF,∵∠PMO+∠PME=180°,∠PMO+∠PNO=180°,∴∠PME=∠PNO,在△PME和△PNF中,,∴△PME≌△PNF(AAS),∴PM=PN;(2)解:過(guò)O作OE⊥AB與E,OF⊥AC于F,∵BO、CO分別平分∠ABC和∠ACB,∴EO=DO,OF=DO,∵OD=3,∴EO=FO=3,∵△ABC的周長(zhǎng)是12,∴AB+BC+AC=12,∴△ABC的面積:AB?EO+AC?FO+CB?DO=(AB+AC+BC)=×12=18,故答案為:18.【點(diǎn)評(píng)】本題是三角形綜合題,考查了角平分線的性質(zhì)、三角形全等的判定和性質(zhì)、等腰直角三角形的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.6.(2021秋?東莞市期末)(1)如圖1,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,線段EF、BE、FD之間的關(guān)系是EF=BE+FD;(不需要證明)(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明.若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.(3)如圖3,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF=∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明.若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.【分析】(1)延長(zhǎng)CB至G,使BG=DF,連接AG,證明△ABG≌△ADF,根據(jù)全等三角形的性質(zhì)得到AG=AF,∠BAG=∠DAF,再證明△GAE≌△FAE,根據(jù)全等三角形的性質(zhì)得出EF=EG,結(jié)合圖形計(jì)算,證明結(jié)論;(2)延長(zhǎng)CB至M,使BM=DF,連接AM,仿照(1)的證明方法解答;(3)在EB上截取BH=DF,連接AH,仿照(1)的證明方法解答.【解答】解:(1)EF=BE+FD,理由如下:如圖1,延長(zhǎng)CB至G,使BG=DF,連接AG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=∠EAF,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴EF=EG,∵EG=BG+BE=BE+DF,∴EF=BE+FD,故答案為:EF=BE+FD;(2)(1)中的結(jié)論仍然成立,理由如下:如圖2,延長(zhǎng)CB至M,使BM=DF,連接AM,∵∠ABC+∠D=180°,∠ABC+∠1=180°,∴∠1=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠3=∠2,∵∠EAF=∠BAD,∴∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,在△MAE和△FAE中,,∴△MAE≌△FAE(SAS),∴EF=EM,∵EM=BM+BE=BE+DF,∴EF=BE+FD;(3)(1)中的結(jié)論不成立,EF=BE﹣FD,理由如下:如圖3,在EB上截取BH=DF,連接AH,同(2)中證法可得,△ABH≌△ADF,∴AH=AF,∠BAH=∠DAF,∴∠HAE=∠FAE,在△HAE和△FAE中,,∴△HAE≌△FAE(SAS),∴EF=EH,∵EH=BE﹣BH=BE﹣DF,∴EF=BE﹣FD.【點(diǎn)評(píng)】本題考查的是全等三角形的判定和性質(zhì),掌握三角形全等的判定定理、靈活運(yùn)用類比思想是解題的關(guān)鍵.7.(2022秋?西城區(qū)校級(jí)期中)(1)問(wèn)題背景.如圖1,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是線段BC、線段CD上的點(diǎn).若∠BAD=2∠EAF,試探究線段BE、EF、FD之間的數(shù)量關(guān)系.小明同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,先證明△ABE≌△ADG.再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF.(2)猜想論證.如圖2,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E在線段BC上、F在線段CD延長(zhǎng)線上.若∠BAD=2∠EAF,上述結(jié)論是否依然成立?若成立說(shuō)明理由;若不成立,試寫(xiě)出相應(yīng)的結(jié)論并給出你的證明.(3)拓展應(yīng)用.如圖3,在四邊形ABCD中,∠BDC=45°,連接BC、AD,AB:AC:BC=3:4:5,AD=4,且∠ABD+∠CBD=180°.則△ACD的面積為.【分析】(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG(SAS),可得AE=AG,再證明△AEF≌△AGF(SAS),可得EF=FG,即可解題;(2)在BE上截取BG,使BG=DF,連接AG.根據(jù)(1)的證法,我們可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.(3)如圖3中,如圖3中,過(guò)點(diǎn)D作DH⊥AB交AB的延長(zhǎng)線于H,DK⊥AC交AC的延長(zhǎng)線于K,DJ⊥BC于J.證明四邊形AHDK是正方形即可解決問(wèn)題.【解答】解:延長(zhǎng)FD到點(diǎn)G.使DG=BE,連接AG,∵∠B+∠ADF=180°,∠ADF+∠ADG=180°,∴∠ADG=∠B,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=2∠EAF,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案為:EF=BE+DF.(2)結(jié)論EF=BE+FD不成立,結(jié)論:EF=BE﹣FD.理由如下:證明:如圖2中,在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵在△ABG與△ADF中,,∴△ABG≌△ADF(SAS).∴∠BAG=∠DAF,AG=AF.∴∠BAD=∠BAG+∠GAD=∠DAF+∠GAD=∠GAF.∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF(SAS).∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.(3)如圖3中,如圖3中,過(guò)點(diǎn)D作DH⊥AB交AB的延長(zhǎng)線于H,DK⊥AC交AC的延長(zhǎng)線于K,DJ⊥BC于J.∵AB:AC:BC=3:4:5,∴可以假設(shè)AB=3k,AC=4k,BC=5k,∴AB2+AC2=BC2,∴∠BAC=90°,∵∠H=∠K=90°,∴四邊形AHDK是矩形,∴∠HDK=90°,∵∠BDC=45°,∴∠BDH+∠CDK=45°,∵∠ABD+∠CBD=180°,∠ABD+∠DBH=180°,∴∠DBH=∠DBC,∵∠H=∠DJB=90°,DB=DB,∴△BDH≌△BDJ(AAS),∴DH=DJ,∠BDH=∠BDJ,BH=BJ,∵∠BDJ+∠CDJ=45°,∠BHH+∠CDK=∠BDJ+∠CDK=45°,∴∠CDJ=∠CDK,∵∠K=∠DJC=90°,CD=CD,∴△CDK≌△CDJ(AAS),∴DJ=DK,CJ=CK,∴DH=DK,∴四邊形AHDK是正方形,∴BH+CK=BJ+CJ=5k,∴AH+AK=12k,∴AK=KD=6k,∵AD=4,∴AK=DK=2=6k,∴k=,∴AC=,∴S△ACD=?AC?DK=?×2=.故答案為.【點(diǎn)評(píng)】本題考查了四邊形綜合題,三角形全等的判定和性質(zhì);本題中通過(guò)全等三角形來(lái)實(shí)現(xiàn)線段的轉(zhuǎn)換是解題的關(guān)鍵,沒(méi)有明確的全等三角形時(shí),要通過(guò)輔助線來(lái)構(gòu)建與已知和所求條件相關(guān)聯(lián)全等三角形.8.(2021秋?黔西南州期末)問(wèn)題背景:如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系,小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF;探索延伸:如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以70海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以90海里/小時(shí)的速度,前進(jìn)2小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.【分析】問(wèn)題背景:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,證明△ABE≌△ADG,得到△AEF≌△AGF,證明EF=FG,得到答案;探索延伸:連接EF,延長(zhǎng)AE,BF相交于點(diǎn)C,利用全等三角形的性質(zhì)證明EF=AE+FB.實(shí)際應(yīng)用:如圖3,連接EF,延長(zhǎng)AE,BF相交于點(diǎn)C,首先證明,∠FOE=∠AOB,利用結(jié)論EF=AE+BF求解即可.【解答】解:?jiǎn)栴}背景:由題意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案為:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如圖2,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.實(shí)際應(yīng)用:如圖3,連接EF,延長(zhǎng)AE,BF相交于點(diǎn)C,在四邊形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的條件,∴結(jié)論EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此時(shí)兩艦艇之間的距離為320海里.【點(diǎn)評(píng)】本題考查的是四邊形知識(shí)的綜合運(yùn)用,掌握三角形全等的判定和性質(zhì)、理解方位角的概念是解題的關(guān)鍵,注意規(guī)律的總結(jié)和運(yùn)用.9.(2021秋?科爾沁區(qū)期末)【問(wèn)題背景】在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,試探究圖1中線段BE、EF、FD之間的數(shù)量關(guān)系.【初步探索】小亮同學(xué)認(rèn)為:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,則可得到BE、EF、FD之間的數(shù)量關(guān)系是EF=BE+FD.【探索延伸】在四邊形ABCD中如圖2,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),∠EAF=∠BAD,上述結(jié)論是否仍然成立?說(shuō)明理由.【結(jié)論運(yùn)用】如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角(∠EOF)為70°,試求此時(shí)兩艦艇之間的距離.【分析】探索延伸:延長(zhǎng)FD到G,使DG=BE,連接AG,證明△ABE≌△ADG和△AEF≌△AGF,得到答案;結(jié)論運(yùn)用:連接EF,延長(zhǎng)AE、BF交于點(diǎn)C,得到EF=AE+BF,根據(jù)距離、速度和時(shí)間的關(guān)系計(jì)算即可.【解答】解:初步探索:EF=BE+FD,故答案為:EF=BE+FD,探索延伸:結(jié)論仍然成立,證明:如圖2,延長(zhǎng)FD到G,使DG=BE,連接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△AGF中,,∴△AEF≌△AGF,∴EF=FG,∴FG=DG+FD=BE+DF;結(jié)論運(yùn)用:解:如圖3,連接EF,延長(zhǎng)AE、BF交于點(diǎn)C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的條件∴結(jié)論EF=AE+BF成立,即EF=1.5×(60+80)=210海里,答:此時(shí)兩艦艇之間的距離是210海里.【點(diǎn)評(píng)】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵,注意要正確作出輔助線.10.(2021秋?鐵鋒區(qū)期末)【問(wèn)題背景】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,試探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF.【探索延伸】如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.【學(xué)以致用】如圖3,四邊形ABCD是邊長(zhǎng)為5的正方形,∠EBF=45°,直接寫(xiě)出△DEF的周長(zhǎng).【分析】(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(2)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(3)延長(zhǎng)DC,截取CG=AE,連接BG,根據(jù)SAS定理可得出△AEB≌△CGB,故可得出BE=BG,∠ABE=∠CBG,再由∠EBF=45°,∠ABC=90°可得出∠ABE+∠CBF=45°,故∠CBF+∠CBG=45°,由SAS定理可得△EBF≌△GBF,故EF=GF,故△DEF的周長(zhǎng)=EF+ED+CF=AE+CF+DE+DF=AD+CD,由此可得出結(jié)論.【解答】(1)解:如圖1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案為:EF=BE+DF.(2)解:結(jié)論EF=BE+DF仍然成立;理由:如圖2,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如圖3,延長(zhǎng)DC到點(diǎn)G,截取CG=AE,連接BG,在△AEB與△CGB中,∵,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF與△GBF中,∵,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周長(zhǎng)=EF+ED+DF=AE+CF+DE+DF=AD+CD=5+5=10.【點(diǎn)評(píng)】本題考查的是全等三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出全等三角形是解題的關(guān)鍵.11.(2022?金華校級(jí)開(kāi)學(xué))【問(wèn)題背景】如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且∠EAF=60°,試探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使GD=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF.【探索延伸】如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.【分析】【問(wèn)題背景】結(jié)論:EF=BE+FD.如圖1,延長(zhǎng)FD到點(diǎn)G,使GD=BE,連結(jié)AG.證明△ABE≌△ADG(SAS),△AEF≌△AGF(SAS),可得結(jié)論.【探索延伸】結(jié)論EF=BE+DF仍然成立.證明方法類似上面.【解答】解:【問(wèn)題背景】:EF=BE+FD.理由:如圖1,延長(zhǎng)FD到點(diǎn)G,使GD=BE,連結(jié)AG.在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案為EF=BE+FD.[探索延伸]結(jié)論EF=BE+DF仍然成立.理由:如圖2,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連結(jié)AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD.【點(diǎn)評(píng)】本題屬于四邊形綜合題,考查了全等三角形的判定和性質(zhì),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考??碱}型.12.(2022秋?秦淮區(qū)校級(jí)月考)(1)如圖1,在四邊形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=50°.探究圖中線段EF,BE,F(xiàn)D之間的數(shù)量關(guān)系.小明同學(xué)探究的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論是EF=BE+DF(直接寫(xiě)結(jié)論,不需證明);(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是BC,CD上的點(diǎn),且2∠EAF=∠BAD,上述結(jié)論是否仍然成立,若成立,請(qǐng)證明,若不成立,請(qǐng)說(shuō)明理由;(3)如圖3,四邊形ABCD是邊長(zhǎng)為7的正方形,∠EBF=45°,直接寫(xiě)出△DEF的周長(zhǎng).【分析】(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,由“SAS”可證△ABE≌△ADG,可得AE=AG,∠BAE=∠DAG,再由“SAS”可證△AEF≌△AGF,可得EF=FG,即可解題;(2)延長(zhǎng)EB到G,使BG=DF,連接AG,即可證明△ABG≌△ADF,可得AF=AG,再證明△AEF≌△AEG,可得EF=EG,即可解題;(3)延長(zhǎng)EA到H,使AH=CF,連接BH,由“SAS”可證△ABH≌△CBF,可得BH=BF,∠ABH=∠CBF,由“SAS”可證△EBH≌△EBF,可得EF=EH,可得EF=EH=AE+CF,即可求解.【解答】證明:(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠BAD=100°,∠EAF=50°,∴∠BAE+∠FAD=∠DAG+∠FAD=50°,∴∠EAF=∠FAG=50°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=BE+DF,故答案為:EF=BE+DF;(2)結(jié)論仍然成立,理由如下:如圖2,延長(zhǎng)EB到G,使BG=DF,連接AG.∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG與△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)如圖,延長(zhǎng)EA到H,使AH=CF,連接BH,∵四邊形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周長(zhǎng)=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.【點(diǎn)評(píng)】本題是四邊形的綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),添加恰當(dāng)輔助線構(gòu)造全等三角形是本題的關(guān)鍵.13.(2022春?南關(guān)區(qū)校級(jí)月考)【問(wèn)題背景】如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且∠EAF=60°,試探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是:延長(zhǎng)FD到點(diǎn)G,使GD=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+FD.【探索延伸】如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.【學(xué)以致用】如圖3,在四邊形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是邊AB上一點(diǎn),當(dāng)∠DCE=45°,BE=2時(shí),則DE的長(zhǎng)為5.【分析】【問(wèn)題背景】延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;【探索延伸】延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;【學(xué)以致用】過(guò)點(diǎn)C作CG⊥AD交AD的延長(zhǎng)線于點(diǎn)G,利用勾股定理求得DE的長(zhǎng).【解答】【問(wèn)題背景】解:如圖1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案為:EF=BE+FD.【探索延伸】解:結(jié)論EF=BE+DF仍然成立;理由:如圖2,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;【學(xué)以致用】如圖3,過(guò)點(diǎn)C作CG⊥AD,交AD的延長(zhǎng)線于點(diǎn)G,由【探索延伸】和題設(shè)知:DE=DG+BE,設(shè)DG=x,則AD=6﹣x,DE=x+2,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+42=(x+2)2,解得x=3.∴DE=2+3=5.故答案是:5.【點(diǎn)評(píng)】此題是一道把等腰三角形的判定、勾股定理、全等三角形的判定結(jié)合求解的綜合題.考查學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)的能力,解決問(wèn)題的關(guān)鍵是在直角三角形中運(yùn)用勾股定理列方程求解.14.(2022秋?江都區(qū)月考)如圖1,在正方形ABCD中,E、F分別是BC,CD上的點(diǎn),且∠EAF=45度.則有結(jié)論EF=BE+FD成立;(1)如圖2,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC,CD上的點(diǎn),且∠EAF是∠BAD的一半,那么結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)說(shuō)明理由.(2)若將(1)中的條件改為:如圖3,在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長(zhǎng)BC到點(diǎn)E,延長(zhǎng)CD到點(diǎn)F,使得∠EAF仍然是∠BAD的一半,則結(jié)論EF=BE+FD是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)寫(xiě)出它們的數(shù)量關(guān)系并證明.【分析】(1)結(jié)論仍然成立.延長(zhǎng)CB到G,使BG=FD,根據(jù)已知條件容易證明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠DAF+∠BAE=∠EAF,進(jìn)一步得到∠EAF=∠GAE,現(xiàn)在可以證明△AEF≌△AEG,然后根據(jù)全等三角形的性質(zhì)就可以證明結(jié)論成立;(2)結(jié)論不成立,應(yīng)為EF=BE﹣DF,如圖在CB上截取BG=FD,由于∠B+∠ADC=180°,∠ADF+∠ADC=180°,可以得到∠B=∠ADF,再利用已知條件可以證明△ABG≌△ADF,由此可以推出∠BAG=∠DAF,AG=AF,而∠EAF=∠BAD,所以得到∠EAF=∠GAE,現(xiàn)在可以證明△AEF≌△AEG,再根據(jù)全等三角形的性質(zhì)就可以證明EF=EG=EB﹣BG=EB﹣DF.【解答】解:(1)延長(zhǎng)CB到G,使BG=FD,連接AG,∵∠ABG=∠D=90°,AB=AD,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠DAF+∠BAE=∠EAF,∴∠EAF=∠GAE,∴△AEF≌△AEG,∴EF=EG=EB+BG=EB+DF.(2)結(jié)論不成立,應(yīng)為EF=BE﹣DF,證明:在BE上截取BG,使BG=DF,連接AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF.∵AB=AD,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.【點(diǎn)評(píng)】此題是開(kāi)放性試題,首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對(duì)學(xué)生的分析問(wèn)題,解決問(wèn)題的能力要求比較高.15.(2022秋?平橋區(qū)校級(jí)月考)同學(xué)們,在初一學(xué)習(xí)正多邊形和圓這節(jié)課時(shí),我們就學(xué)習(xí)過(guò)四邊形的內(nèi)角和等于360°.下面我們就在四邊形中來(lái)研究幾個(gè)問(wèn)題:(1)問(wèn)題背景:如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF;(2)探索延伸:如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍成立,并說(shuō)明理由;(3)實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(點(diǎn)O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以45海里/時(shí)的速度前進(jìn),同時(shí),艦艇乙沿北偏東50°的方向以60海里/時(shí)的速度前進(jìn),2小時(shí)后,指揮中心觀察到甲、乙兩艦艇分別到達(dá)E、F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.【分析】(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(2)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(3)連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,然后與(2)同理可證.【解答】解:(1)EF=BE+DF,證明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案為EF=BE+DF.(2)結(jié)論EF=BE+DF仍然成立;理由:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,如圖2,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如圖3,連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的條件,∴結(jié)論EF=AE+BF成立,即EF=2×(45+60)=210(海里).答:此時(shí)兩艦艇之間的距離是210海里.【點(diǎn)評(píng)】本題考查了全等三角形的判定以及全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證△AEF≌△AGF是解題的關(guān)鍵.16.(2022秋?曾都區(qū)校級(jí)月考)問(wèn)題背景:如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF;探索延伸:如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;實(shí)際應(yīng)用:如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離.【分析】(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(2)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(3)連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,然后與(2)同理可證.【解答】解:(1)EF=BE+DF,證明如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案為EF=BE+DF.(2)結(jié)論EF=BE+DF仍然成立;理由:延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,如圖②,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如圖③,連接EF,延長(zhǎng)AE、BF相交于點(diǎn)C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的條件,∴結(jié)論EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此時(shí)兩艦艇之間的距離是210海里【點(diǎn)評(píng)】本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證△AEF≌△AGF是解題的關(guān)鍵.17.(2022秋?大石橋市期中)問(wèn)題背景:(1)如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn).且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+DF.探索延伸:(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由.【分析】(1)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;(2)延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題.【解答】證明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案為EF=BE+DF.(2)結(jié)論EF=BE+DF仍然成立;理由:如圖2,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;【點(diǎn)評(píng)】本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證△AEF≌△AGF是解題的關(guān)鍵.18.(2022秋?東港區(qū)校級(jí)月考)問(wèn)題背景:如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G.使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是EF=BE+FD;探索延伸:如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度消防檢測(cè)服務(wù)外包合同勞動(dòng)廳制定2篇
- 2025年度石材行業(yè)市場(chǎng)調(diào)查與分析合同3篇
- 二零二五年度外墻巖棉板保溫材料采購(gòu)、施工及質(zhì)量監(jiān)管合同2篇
- 二零二五年度旅游行業(yè)SaaS解決方案銷售及服務(wù)協(xié)議3篇
- 二零二五年度波形護(hù)欄安裝及售后保養(yǎng)服務(wù)合同3篇
- 二零二五年度廣告發(fā)布合同:某品牌在央視春晚廣告投放3篇
- 編織紅繩課程設(shè)計(jì)
- 二零二五年度建筑膩?zhàn)赢a(chǎn)品進(jìn)出口代理合同3篇
- 二零二五年度彩鋼房租賃與投資合作協(xié)議3篇
- 課程設(shè)計(jì)怎么形容成語(yǔ)
- 抽象函數(shù)單調(diào)性的證明
- 東南大學(xué)結(jié)構(gòu)設(shè)計(jì)原理大作業(yè)完成稿
- 廣東省廣州市天河2022-2023學(xué)年數(shù)學(xué)七年級(jí)第一學(xué)期期末調(diào)研模擬試題含解析
- GB∕T 41627-2022 動(dòng)物源空腸彎曲菌檢測(cè)方法
- 供貨保障措施
- (完整版)常用樂(lè)高零件清單匯總
- 消防四個(gè)能力
- 機(jī)動(dòng)車環(huán)檢標(biāo)準(zhǔn)方法驗(yàn)證模板
- AQL標(biāo)準(zhǔn)抽樣檢驗(yàn)表
- 美國(guó)Control4智能家居設(shè)計(jì)方案解說(shuō)資料
- DES算法Matlab代碼
評(píng)論
0/150
提交評(píng)論