杭州醫(yī)學(xué)院《機(jī)器人學(xué)引論》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
杭州醫(yī)學(xué)院《機(jī)器人學(xué)引論》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
杭州醫(yī)學(xué)院《機(jī)器人學(xué)引論》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
杭州醫(yī)學(xué)院《機(jī)器人學(xué)引論》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
杭州醫(yī)學(xué)院《機(jī)器人學(xué)引論》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線(xiàn)…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共5頁(yè)杭州醫(yī)學(xué)院《機(jī)器人學(xué)引論》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的自動(dòng)駕駛倫理問(wèn)題中,假設(shè)一輛自動(dòng)駕駛汽車(chē)面臨不可避免的碰撞,必須在保護(hù)車(chē)內(nèi)乘客和避免撞到行人之間做出選擇。以下關(guān)于這種倫理困境的解決方法,哪一項(xiàng)是最具爭(zhēng)議的?()A.優(yōu)先保護(hù)車(chē)內(nèi)乘客的生命安全,因?yàn)樗麄兪擒?chē)輛的使用者B.隨機(jī)做出選擇,將命運(yùn)交給概率C.設(shè)計(jì)算法,根據(jù)具體情況(如行人的數(shù)量、年齡等)進(jìn)行權(quán)衡D.完全由汽車(chē)制造商決定默認(rèn)的選擇策略,用戶(hù)無(wú)法干預(yù)2、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)智能體正在通過(guò)強(qiáng)化學(xué)習(xí)算法學(xué)習(xí)玩一款復(fù)雜的游戲,以下關(guān)于強(qiáng)化學(xué)習(xí)過(guò)程的描述,正確的是:()A.智能體在學(xué)習(xí)過(guò)程中只需要隨機(jī)嘗試不同的動(dòng)作,就能快速找到最優(yōu)策略B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對(duì)智能體的學(xué)習(xí)效果沒(méi)有顯著影響,只要有獎(jiǎng)勵(lì)就行C.智能體能夠通過(guò)與環(huán)境的不斷交互和試錯(cuò),逐漸優(yōu)化自己的策略以獲得更高的累計(jì)獎(jiǎng)勵(lì)D.強(qiáng)化學(xué)習(xí)不需要考慮環(huán)境的動(dòng)態(tài)變化和不確定性,只關(guān)注當(dāng)前的動(dòng)作和獎(jiǎng)勵(lì)3、自然語(yǔ)言處理是人工智能的重要領(lǐng)域之一,涉及到文本分類(lèi)、機(jī)器翻譯等多個(gè)任務(wù)。假設(shè)要構(gòu)建一個(gè)能夠自動(dòng)將英語(yǔ)文章翻譯成中文的系統(tǒng),需要考慮語(yǔ)言的語(yǔ)法、語(yǔ)義和上下文等復(fù)雜因素。以下哪種技術(shù)或方法在機(jī)器翻譯中能夠更好地捕捉語(yǔ)言的長(zhǎng)距離依賴(lài)關(guān)系和語(yǔ)義表示?()A.基于規(guī)則的翻譯方法B.統(tǒng)計(jì)機(jī)器翻譯C.神經(jīng)機(jī)器翻譯(NMT)D.詞袋模型4、在人工智能的應(yīng)用場(chǎng)景中,比如醫(yī)療診斷領(lǐng)域,要開(kāi)發(fā)一個(gè)能夠根據(jù)患者的癥狀、檢查結(jié)果和病史準(zhǔn)確預(yù)測(cè)疾病的系統(tǒng)。為了實(shí)現(xiàn)高精度的預(yù)測(cè),以下哪種因素可能起到?jīng)Q定性作用?()A.數(shù)據(jù)的質(zhì)量和數(shù)量B.算法的復(fù)雜度C.計(jì)算資源的多少D.模型的訓(xùn)練時(shí)間5、在人工智能的發(fā)展過(guò)程中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)一個(gè)深度學(xué)習(xí)模型在醫(yī)療診斷中做出了關(guān)鍵決策,但無(wú)法解釋其決策的依據(jù)。這可能會(huì)帶來(lái)哪些潛在的風(fēng)險(xiǎn)?()A.醫(yī)生可能無(wú)法信任模型的結(jié)果B.模型的準(zhǔn)確率可能會(huì)下降C.模型的訓(xùn)練時(shí)間可能會(huì)增加D.模型的復(fù)雜度可能會(huì)降低6、在一個(gè)利用人工智能進(jìn)行能源管理的系統(tǒng)中,例如優(yōu)化建筑物的能源消耗或電網(wǎng)的調(diào)度,以下哪個(gè)方面的考慮可能是至關(guān)重要的?()A.實(shí)時(shí)數(shù)據(jù)采集和處理B.精準(zhǔn)的預(yù)測(cè)模型C.多目標(biāo)優(yōu)化策略D.以上都是7、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對(duì)應(yīng)的期望輸出B.常見(jiàn)的監(jiān)督學(xué)習(xí)算法包括決策樹(shù)、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對(duì)新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測(cè)或分類(lèi)D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對(duì)于文本、圖像等非數(shù)值型數(shù)據(jù)無(wú)法處理8、人工智能在物流領(lǐng)域的應(yīng)用能夠提高物流效率和服務(wù)質(zhì)量。以下關(guān)于人工智能在物流應(yīng)用的敘述,不正確的是()A.可以通過(guò)路徑規(guī)劃算法優(yōu)化貨物運(yùn)輸路線(xiàn),降低運(yùn)輸成本B.利用圖像識(shí)別技術(shù)實(shí)現(xiàn)貨物的自動(dòng)分揀和識(shí)別C.人工智能在物流領(lǐng)域的應(yīng)用面臨數(shù)據(jù)安全和隱私保護(hù)等挑戰(zhàn)D.物流領(lǐng)域?qū)θ斯ぶ悄芗夹g(shù)的需求不高,傳統(tǒng)的管理方法已經(jīng)足夠滿(mǎn)足需求9、人工智能在醫(yī)療領(lǐng)域的應(yīng)用越來(lái)越廣泛,例如疾病診斷和醫(yī)療影像分析。假設(shè)一個(gè)基于人工智能的醫(yī)療診斷系統(tǒng)正在研發(fā)中,以下關(guān)于該系統(tǒng)的描述,正確的是:()A.只要輸入足夠多的病例數(shù)據(jù),該系統(tǒng)就能準(zhǔn)確診斷所有疾病,無(wú)需醫(yī)生干預(yù)B.該系統(tǒng)可以完全替代醫(yī)生的經(jīng)驗(yàn)和判斷,因?yàn)槿斯ぶ悄芩惴ǜ泳_C.雖然人工智能可以提供輔助診斷,但醫(yī)生的專(zhuān)業(yè)知識(shí)和臨床經(jīng)驗(yàn)仍然至關(guān)重要D.人工智能醫(yī)療診斷系統(tǒng)的準(zhǔn)確性不受數(shù)據(jù)質(zhì)量和多樣性的影響10、在人工智能的知識(shí)表示方法中,語(yǔ)義網(wǎng)絡(luò)和框架表示是常見(jiàn)的方式。假設(shè)我們要構(gòu)建一個(gè)關(guān)于動(dòng)物分類(lèi)的知識(shí)系統(tǒng),以下關(guān)于這兩種表示方法的說(shuō)法,哪一項(xiàng)是正確的?()A.語(yǔ)義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識(shí)B.框架表示難以處理知識(shí)的不確定性和模糊性C.語(yǔ)義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對(duì)象及其關(guān)系D.框架表示在知識(shí)的擴(kuò)展和更新方面較為困難11、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有一定的應(yīng)用。假設(shè)要使用人工智能生成音樂(lè)或繪畫(huà)作品。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以為藝術(shù)家提供靈感和創(chuàng)意,輔助藝術(shù)創(chuàng)作過(guò)程B.生成的作品具有獨(dú)特的風(fēng)格和創(chuàng)意,完全可以與人類(lèi)藝術(shù)家的作品媲美C.人工智能藝術(shù)創(chuàng)作仍然需要人類(lèi)藝術(shù)家的指導(dǎo)和審美判斷D.引發(fā)了關(guān)于藝術(shù)定義和創(chuàng)作本質(zhì)的思考和討論12、在人工智能的倫理和社會(huì)影響方面,存在許多值得關(guān)注的問(wèn)題。假設(shè)人工智能系統(tǒng)在招聘過(guò)程中被用于篩選候選人,以下關(guān)于這種應(yīng)用的說(shuō)法,哪一項(xiàng)是需要謹(jǐn)慎考慮的?()A.可以完全避免人為的偏見(jiàn)和不公平B.可能會(huì)因?yàn)閿?shù)據(jù)偏差導(dǎo)致某些群體受到不公平對(duì)待C.其決策結(jié)果應(yīng)該無(wú)條件被接受和執(zhí)行D.不需要對(duì)其進(jìn)行監(jiān)管和評(píng)估13、在人工智能的語(yǔ)音合成任務(wù)中,要生成自然流暢且富有情感的語(yǔ)音。假設(shè)需要模擬不同人的聲音特點(diǎn)和情感表達(dá),以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語(yǔ)音合成模型,學(xué)習(xí)語(yǔ)音特征B.使用固定的語(yǔ)音模板,進(jìn)行簡(jiǎn)單組合C.隨機(jī)生成語(yǔ)音的音調(diào)和語(yǔ)速D.不考慮情感因素,只生成清晰的語(yǔ)音14、人工智能在圖像識(shí)別領(lǐng)域取得了顯著的成果。假設(shè)要開(kāi)發(fā)一個(gè)能夠識(shí)別水果種類(lèi)的圖像識(shí)別系統(tǒng),需要考慮多種因素。以下關(guān)于圖像數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最關(guān)鍵的?()A.對(duì)圖像進(jìn)行裁剪和旋轉(zhuǎn),以統(tǒng)一圖像的大小和方向B.將圖像轉(zhuǎn)換為灰度圖像,減少數(shù)據(jù)量C.對(duì)圖像進(jìn)行增強(qiáng)和去噪處理,提高圖像質(zhì)量D.隨機(jī)打亂圖像的順序,增加數(shù)據(jù)的多樣性15、人工智能在教育領(lǐng)域有著潛在的應(yīng)用價(jià)值。假設(shè)要開(kāi)發(fā)一個(gè)個(gè)性化的學(xué)習(xí)系統(tǒng)。以下關(guān)于人工智能在教育中的應(yīng)用描述,哪一項(xiàng)是不正確的?()A.可以根據(jù)學(xué)生的學(xué)習(xí)情況和特點(diǎn),提供個(gè)性化的學(xué)習(xí)路徑和資源推薦B.能夠?qū)崟r(shí)監(jiān)測(cè)學(xué)生的學(xué)習(xí)狀態(tài),及時(shí)給予反饋和指導(dǎo)C.人工智能教育系統(tǒng)可以完全取代教師的角色,實(shí)現(xiàn)自主學(xué)習(xí)D.有助于發(fā)現(xiàn)學(xué)生的學(xué)習(xí)問(wèn)題和知識(shí)漏洞,提高教學(xué)效果二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)說(shuō)明模擬退火算法的工作機(jī)制。2、(本題5分)說(shuō)明人工智能在社會(huì)輿論監(jiān)測(cè)和引導(dǎo)中的方法。3、(本題5分)解釋人工智能在循環(huán)經(jīng)濟(jì)和資源回收中的作用。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python的OpenCV庫(kù),實(shí)現(xiàn)對(duì)圖像的邊緣檢測(cè)。加載一張圖像,使用Canny邊緣檢測(cè)算法處理圖像,展示處理前后的圖像效果,并分析邊緣檢測(cè)的效果和參數(shù)的影響。2、(本題5分)利用Python的PyTorch庫(kù),構(gòu)建一個(gè)基于注意力機(jī)制的Transformer模型,對(duì)長(zhǎng)篇小說(shuō)進(jìn)行章節(jié)內(nèi)容的自動(dòng)摘要生成。對(duì)比不同的注意力機(jī)制和訓(xùn)練策略對(duì)生成效果的影響。3、(本題5分)利用Python的Keras庫(kù),實(shí)現(xiàn)一個(gè)基于門(mén)控循環(huán)單元(GRU)的自然語(yǔ)言處理模型,用于情感分析。對(duì)大量的影評(píng)數(shù)據(jù)進(jìn)行訓(xùn)練,判斷影評(píng)的情感傾向是積極還是消極。4、(本題5分)運(yùn)用Python的Keras庫(kù),構(gòu)建一個(gè)多層感知機(jī)(MLP)模型,對(duì)MNIST數(shù)據(jù)集進(jìn)行數(shù)字識(shí)別。使用批量歸一化(BatchNormalization)和Dropout技術(shù)提高模型的泛化能力,比較不同網(wǎng)絡(luò)結(jié)構(gòu)下的性能。5、(本題5分)利用Scikit-learn中的邏輯回歸算法,對(duì)電商用戶(hù)的購(gòu)買(mǎi)行為進(jìn)行預(yù)測(cè),判斷用戶(hù)是否會(huì)購(gòu)買(mǎi)某一類(lèi)商品。分析用戶(hù)的歷史購(gòu)買(mǎi)數(shù)據(jù)、瀏覽記錄和個(gè)人信息等特征,評(píng)估模型的預(yù)測(cè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論