河北石油職業(yè)技術(shù)大學(xué)《三維設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
河北石油職業(yè)技術(shù)大學(xué)《三維設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
河北石油職業(yè)技術(shù)大學(xué)《三維設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
河北石油職業(yè)技術(shù)大學(xué)《三維設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
河北石油職業(yè)技術(shù)大學(xué)《三維設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共5頁河北石油職業(yè)技術(shù)大學(xué)

《三維設(shè)計基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、計算機視覺中的姿態(tài)估計是確定物體在三維空間中的位置和方向。假設(shè)要估計一個機器人手臂的姿態(tài),以下關(guān)于姿態(tài)估計方法的描述,哪一項是不正確的?()A.基于視覺的姿態(tài)估計可以通過分析物體在圖像中的特征點來計算其姿態(tài)B.可以結(jié)合多個攝像頭的圖像信息,提高姿態(tài)估計的精度和魯棒性C.姿態(tài)估計通常需要先對物體進行建模,然后通過匹配圖像和模型來確定姿態(tài)D.姿態(tài)估計的結(jié)果總是非常準(zhǔn)確,不受圖像噪聲、遮擋和物體形狀變化的影響2、在計算機視覺的圖像配準(zhǔn)任務(wù)中,假設(shè)要將兩張拍攝角度和時間不同的同一物體的圖像進行精確對齊。這兩張圖像可能存在縮放、旋轉(zhuǎn)和平移等差異。以下哪種配準(zhǔn)方法可能更適合處理這種情況?()A.基于特征點匹配的方法,如SIFT特征B.直接將兩張圖像疊加,不進行任何配準(zhǔn)操作C.基于圖像灰度值的配準(zhǔn)方法,計算灰度差異D.隨機選擇圖像中的點進行匹配3、在一個基于計算機視覺的無人駕駛系統(tǒng)中,需要對道路場景進行理解和預(yù)測,例如判斷前方是否有行人橫穿馬路。為了實現(xiàn)準(zhǔn)確的場景理解和預(yù)測,以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是4、當(dāng)利用計算機視覺進行視頻監(jiān)控中的異常行為檢測,例如打架、盜竊等,以下哪種方法可能有助于準(zhǔn)確識別異常行為?()A.建立正常行為模型B.運動軌跡分析C.人群密度估計D.以上都是5、在計算機視覺的圖像分割任務(wù)中,假設(shè)要將一張醫(yī)學(xué)圖像中的病變區(qū)域精確地分割出來,以便醫(yī)生進行診斷和治療。這張醫(yī)學(xué)圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復(fù)雜情況時可能更具優(yōu)勢?()A.基于閾值的分割方法,根據(jù)像素值設(shè)定閾值進行分割B.基于區(qū)域生長的分割方法,從種子點開始逐漸擴展區(qū)域C.基于深度學(xué)習(xí)的語義分割算法,如U-NetD.隨機分割圖像,然后根據(jù)后續(xù)分析進行調(diào)整6、計算機視覺在自動駕駛領(lǐng)域有重要應(yīng)用。假設(shè)車輛需要根據(jù)攝像頭采集的圖像來識別道路上的交通標(biāo)志,并且要在不同天氣和光照條件下都能準(zhǔn)確識別。以下哪種方法可能有助于提高交通標(biāo)志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標(biāo)志分類D.減少訓(xùn)練數(shù)據(jù)中的交通標(biāo)志種類7、計算機視覺中的圖像配準(zhǔn)是將不同時間、不同視角或不同傳感器獲取的圖像進行匹配和對齊。以下關(guān)于圖像配準(zhǔn)的敘述,不正確的是()A.圖像配準(zhǔn)需要找到圖像之間的對應(yīng)點或特征,然后進行變換和對齊B.圖像配準(zhǔn)在醫(yī)學(xué)圖像分析、遙感圖像處理和三維重建等領(lǐng)域有著廣泛的應(yīng)用C.圖像配準(zhǔn)的精度和魯棒性受到圖像質(zhì)量、噪聲和幾何變形等因素的影響D.圖像配準(zhǔn)是一個簡單的過程,不需要復(fù)雜的算法和優(yōu)化8、圖像分類是計算機視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對大量的自然風(fēng)景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準(zhǔn)確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡(luò)自動提取特征+深度學(xué)習(xí)分類器D.顏色直方圖特征+樸素貝葉斯9、在計算機視覺中,圖像去霧是提高有霧圖像質(zhì)量的技術(shù)。以下關(guān)于圖像去霧的描述,不準(zhǔn)確的是()A.圖像去霧可以基于物理模型或深度學(xué)習(xí)方法來實現(xiàn)B.深度學(xué)習(xí)方法在圖像去霧中能夠有效地恢復(fù)圖像的細節(jié)和顏色C.圖像去霧只對輕度有霧的圖像有效,對于濃霧圖像效果不佳D.圖像去霧可以提高圖像的清晰度和可視性,有助于后續(xù)的處理和分析10、在計算機視覺的圖像壓縮任務(wù)中,需要在減少數(shù)據(jù)量的同時盡量保持圖像的質(zhì)量。假設(shè)要對一組高清圖像進行壓縮,以節(jié)省存儲空間和傳輸帶寬,同時要求解壓后的圖像能夠滿足一定的視覺要求。以下哪種圖像壓縮算法在這種情況下效果較好?()A.JPEG壓縮算法B.PNG壓縮算法C.WebP壓縮算法D.BPG壓縮算法11、在計算機視覺的行人重識別任務(wù)中,假設(shè)要在多個攝像頭拍攝的畫面中找到同一個行人。以下關(guān)于特征融合的方法,哪一項是不太合理的?()A.將行人的外觀特征和步態(tài)特征進行融合B.簡單地將不同特征進行拼接,不考慮權(quán)重分配C.根據(jù)特征的重要性為其分配不同的權(quán)重進行融合D.利用深度學(xué)習(xí)模型自動學(xué)習(xí)特征的融合方式12、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準(zhǔn)確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準(zhǔn)確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征13、在計算機視覺的目標(biāo)跟蹤任務(wù)中,需要持續(xù)跟蹤一個或多個運動目標(biāo)。假設(shè)要跟蹤一個在操場上跑步的人。以下關(guān)于目標(biāo)跟蹤算法的描述,哪一項是不正確的?()A.可以基于特征匹配的方法,在連續(xù)的幀中找到目標(biāo)的相似特征來實現(xiàn)跟蹤B.深度學(xué)習(xí)中的相關(guān)濾波算法能夠快速準(zhǔn)確地跟蹤目標(biāo),適應(yīng)目標(biāo)的外觀變化C.目標(biāo)跟蹤算法能夠在目標(biāo)被遮擋或短暫消失后,仍然準(zhǔn)確地恢復(fù)跟蹤D.無論目標(biāo)的運動速度和軌跡如何復(fù)雜,目標(biāo)跟蹤算法都能完美地跟蹤14、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會使圖像變得模糊B.均值濾波在去除噪聲的同時能夠很好地保留圖像的細節(jié)信息C.小波變換去噪方法計算復(fù)雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復(fù)出原始的無噪圖像15、在計算機視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像二、簡答題(本大題共4個小題,共20分)1、(本題5分)計算機視覺中如何進行橋梁健康監(jiān)測?2、(本題5分)簡述計算機視覺中目標(biāo)跟蹤的方法和挑戰(zhàn)。3、(本題5分)說明計算機視覺在橡膠制品檢測中的應(yīng)用。4、(本題5分)簡述圖像的傅里葉變換的用途。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)設(shè)計一個系統(tǒng),利用計算機視覺檢測游樂場設(shè)施的安全狀況。2、(本題5分)設(shè)計一個程序,通過計算機視覺識別不同品牌的電腦。3、(本題5分)通過圖像分類算法,對不同風(fēng)格的珠寶設(shè)計圖像進行分類。4、(本題5分)利用深度學(xué)習(xí)算法,對不同種類的零食圖像進行分類。5、(本題5分)通過圖像分割技術(shù),將醫(yī)學(xué)圖像中的血管和神經(jīng)組織進行分離。四、分析題(本大題共4個小題,共40分)1、(本題10分)觀察某城市的公共交通導(dǎo)向標(biāo)識系統(tǒng)設(shè)計,探討其在圖形符號、色彩搭配和文字信息傳達上的合理性,分析如何有效地引導(dǎo)市民和游

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論