下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)浙江財(cái)經(jīng)大學(xué)
《平面構(gòu)成》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在計(jì)算機(jī)視覺的圖像增強(qiáng)任務(wù)中,旨在改善圖像的質(zhì)量。假設(shè)一張低光照條件下拍攝的照片需要增強(qiáng)。以下關(guān)于圖像增強(qiáng)方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)直方圖均衡化方法增強(qiáng)圖像的對(duì)比度B.基于濾波的方法能夠去除圖像中的噪聲,同時(shí)增強(qiáng)細(xì)節(jié)C.圖像增強(qiáng)可以無(wú)限制地提高圖像的質(zhì)量,不存在過(guò)度增強(qiáng)的問(wèn)題D.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)也可以用于圖像增強(qiáng)2、在計(jì)算機(jī)視覺的三維重建任務(wù)中,假設(shè)要從一系列二維圖像重建出物體的三維模型。以下關(guān)于相機(jī)參數(shù)校準(zhǔn)的重要性,哪一項(xiàng)是不正確的?()A.準(zhǔn)確的相機(jī)參數(shù)有助于提高三維重建的精度B.相機(jī)參數(shù)校準(zhǔn)可以減少重建過(guò)程中的誤差累積C.即使相機(jī)參數(shù)不準(zhǔn)確,也能通過(guò)后續(xù)處理得到精確的三維模型D.不同相機(jī)的參數(shù)差異會(huì)影響三維重建的結(jié)果3、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中的應(yīng)用可以幫助記錄和分析文物的狀態(tài)。假設(shè)要對(duì)一件古老的雕塑進(jìn)行數(shù)字化保存和修復(fù)建議。以下關(guān)于計(jì)算機(jī)視覺在文物保護(hù)中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)三維掃描技術(shù)獲取文物的精確形狀和表面細(xì)節(jié)B.能夠?qū)ξ奈锏念伾图y理進(jìn)行分析,為修復(fù)提供參考C.計(jì)算機(jī)視覺可以完全替代人工的文物修復(fù)工作,保證修復(fù)的質(zhì)量和效果D.可以建立文物的數(shù)字檔案,方便后續(xù)的研究和展示4、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會(huì)給目標(biāo)跟蹤帶來(lái)挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機(jī)交互和自動(dòng)駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響5、計(jì)算機(jī)視覺中的表情識(shí)別旨在識(shí)別圖像或視頻中人物的表情。假設(shè)要在一個(gè)情感分析系統(tǒng)中準(zhǔn)確識(shí)別表情,以下關(guān)于表情識(shí)別方法的描述,正確的是:()A.基于幾何特征的表情識(shí)別方法對(duì)表情的細(xì)微變化不敏感,識(shí)別準(zhǔn)確率低B.基于紋理特征的表情識(shí)別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識(shí)別中能夠?qū)W習(xí)到全局和局部的特征,但對(duì)大規(guī)模數(shù)據(jù)集依賴嚴(yán)重D.表情識(shí)別系統(tǒng)只適用于正面清晰的人臉表情,對(duì)于側(cè)臉和遮擋的表情無(wú)法識(shí)別6、計(jì)算機(jī)視覺中的光流估計(jì)用于計(jì)算圖像中像素的運(yùn)動(dòng)信息。假設(shè)要對(duì)一段視頻中的物體運(yùn)動(dòng)進(jìn)行分析,以下關(guān)于光流估計(jì)的描述,正確的是:()A.稀疏光流估計(jì)只計(jì)算圖像中部分特征點(diǎn)的運(yùn)動(dòng),無(wú)法反映整體的運(yùn)動(dòng)趨勢(shì)B.稠密光流估計(jì)能夠得到圖像中每個(gè)像素的運(yùn)動(dòng)向量,但計(jì)算復(fù)雜度較高C.光流估計(jì)的結(jié)果不受光照變化和噪聲的影響,具有很高的準(zhǔn)確性D.光流估計(jì)只能用于分析勻速直線運(yùn)動(dòng)的物體,對(duì)于復(fù)雜的運(yùn)動(dòng)模式無(wú)法處理7、計(jì)算機(jī)視覺中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過(guò)構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力8、計(jì)算機(jī)視覺在無(wú)人駕駛中的應(yīng)用需要應(yīng)對(duì)各種復(fù)雜的環(huán)境和情況。假設(shè)無(wú)人駕駛汽車要在惡劣天氣下行駛,以下關(guān)于計(jì)算機(jī)視覺在無(wú)人駕駛中的挑戰(zhàn)的描述,哪一項(xiàng)是不正確的?()A.惡劣天氣會(huì)影響圖像的質(zhì)量和清晰度,增加目標(biāo)檢測(cè)和識(shí)別的難度B.計(jì)算機(jī)視覺系統(tǒng)需要與其他傳感器(如雷達(dá)和超聲波傳感器)融合,以提高在惡劣天氣下的感知能力C.深度學(xué)習(xí)模型在惡劣天氣條件下的性能會(huì)顯著下降,無(wú)法正常工作D.針對(duì)惡劣天氣,可以通過(guò)數(shù)據(jù)增強(qiáng)和模型優(yōu)化等方法提高計(jì)算機(jī)視覺系統(tǒng)的魯棒性9、在計(jì)算機(jī)視覺的目標(biāo)識(shí)別任務(wù)中,假設(shè)要識(shí)別不同種類的水果。以下關(guān)于應(yīng)對(duì)類內(nèi)差異和類間相似性的策略,哪一項(xiàng)是不正確的?()A.增加訓(xùn)練數(shù)據(jù)的多樣性,包括不同角度、大小和成熟度的水果B.提取更具區(qū)分性的特征,減少類內(nèi)差異和類間相似性的影響C.降低模型的復(fù)雜度,避免過(guò)度擬合類內(nèi)差異和類間相似性D.忽略類內(nèi)差異和類間相似性,依靠模型的自動(dòng)適應(yīng)能力10、計(jì)算機(jī)視覺在工業(yè)檢測(cè)中的應(yīng)用可以提高生產(chǎn)效率和質(zhì)量。假設(shè)要檢測(cè)生產(chǎn)線上產(chǎn)品的表面缺陷,以下關(guān)于工業(yè)檢測(cè)中的計(jì)算機(jī)視覺技術(shù)的描述,正確的是:()A.傳統(tǒng)的機(jī)器視覺方法在檢測(cè)復(fù)雜的表面缺陷時(shí)比深度學(xué)習(xí)方法更可靠B.深度學(xué)習(xí)模型需要大量的有缺陷和無(wú)缺陷樣本進(jìn)行訓(xùn)練,才能準(zhǔn)確檢測(cè)出各種缺陷C.工業(yè)檢測(cè)中的計(jì)算機(jī)視覺系統(tǒng)不需要考慮實(shí)時(shí)性和準(zhǔn)確性的平衡D.產(chǎn)品的顏色和材質(zhì)對(duì)表面缺陷檢測(cè)的結(jié)果沒有影響11、在計(jì)算機(jī)視覺的視頻壓縮中,為了在保證視覺質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測(cè)D.邊緣檢測(cè)12、在計(jì)算機(jī)視覺的發(fā)展中,模型的可解釋性是一個(gè)重要的研究方向。以下關(guān)于模型可解釋性的描述,不準(zhǔn)確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對(duì)于建立用戶對(duì)模型的信任和確保模型的公正性具有重要意義C.一些可視化技術(shù),如特征圖可視化和類激活映射,可以幫助解釋模型的決策過(guò)程D.目前的計(jì)算機(jī)視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)13、計(jì)算機(jī)視覺中,以下哪種技術(shù)常用于圖像的超分辨率重建的損失函數(shù)?()A.L1損失B.L2損失C.感知損失D.以上都是14、在計(jì)算機(jī)視覺的行人重識(shí)別任務(wù)中,需要在不同攝像頭拍攝的圖像中識(shí)別出同一個(gè)行人。假設(shè)我們要在一個(gè)大型商場(chǎng)的監(jiān)控系統(tǒng)中實(shí)現(xiàn)行人重識(shí)別,以下哪種特征和模型能夠提高識(shí)別的準(zhǔn)確率和跨攝像頭的泛化能力?()A.基于顏色和紋理的特征B.基于深度學(xué)習(xí)的全局特征和度量學(xué)習(xí)C.基于形狀和輪廓的特征D.基于步態(tài)和姿勢(shì)的特征15、計(jì)算機(jī)視覺中的視覺注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺注意力機(jī)制的說(shuō)法,不正確的是()A.視覺注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無(wú)關(guān)信息的處理C.視覺注意力機(jī)制在圖像分類、目標(biāo)檢測(cè)和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度16、計(jì)算機(jī)視覺在文物保護(hù)和修復(fù)中具有潛在應(yīng)用。假設(shè)要對(duì)一件受損的古代書畫進(jìn)行數(shù)字化修復(fù),以下關(guān)于計(jì)算機(jī)視覺在文物保護(hù)中的作用的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)圖像增強(qiáng)和去噪技術(shù)改善書畫的視覺效果B.利用圖像匹配和拼接技術(shù)還原殘缺的部分C.計(jì)算機(jī)視覺技術(shù)能夠完全恢復(fù)文物的原始狀態(tài),使其與未受損時(shí)一模一樣D.為文物修復(fù)專家提供輔助決策和參考依據(jù)17、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,需要根據(jù)用戶提供的查詢圖像找到相似的圖像。假設(shè)我們有一個(gè)大型的圖像數(shù)據(jù)庫(kù),以下哪種圖像表示方法能夠提高圖像檢索的效率和準(zhǔn)確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學(xué)習(xí)的圖像嵌入表示D.基于顏色直方圖的圖像表示18、在計(jì)算機(jī)視覺的立體視覺任務(wù)中,通過(guò)兩個(gè)或多個(gè)相機(jī)獲取的圖像來(lái)計(jì)算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是19、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個(gè)大型圖像數(shù)據(jù)庫(kù)中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對(duì)圖像的標(biāo)簽進(jìn)行文本匹配,忽略圖像內(nèi)容C.隨機(jī)選擇數(shù)據(jù)庫(kù)中的圖像作為檢索結(jié)果D.不進(jìn)行任何預(yù)處理,直接在原始圖像上進(jìn)行檢索20、在計(jì)算機(jī)視覺的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在視頻中被短暫遮擋。以下關(guān)于處理遮擋情況的方法,哪一項(xiàng)是不太有效的?()A.利用目標(biāo)在遮擋前的運(yùn)動(dòng)軌跡預(yù)測(cè)其位置B.完全放棄對(duì)被遮擋目標(biāo)的跟蹤,等待其重新出現(xiàn)C.結(jié)合目標(biāo)的外觀特征和運(yùn)動(dòng)信息進(jìn)行跟蹤D.借助周圍背景和其他相關(guān)物體的信息輔助跟蹤21、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,恢復(fù)圖像中缺失或損壞的部分。假設(shè)要修復(fù)一張老照片中缺失的部分,以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于紋理合成的圖像修復(fù)方法能夠完美恢復(fù)復(fù)雜的結(jié)構(gòu)和細(xì)節(jié)B.深度學(xué)習(xí)中的自編碼器在圖像修復(fù)中無(wú)法學(xué)習(xí)到有效的特征表示C.圖像修復(fù)的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗(yàn)知識(shí)和上下文信息的深度學(xué)習(xí)方法可以產(chǎn)生更合理和自然的修復(fù)效果22、在目標(biāo)檢測(cè)中,YOLO(YouOnlyLookOnce)算法的特點(diǎn)是()A.檢測(cè)速度快B.檢測(cè)精度高C.適用于小目標(biāo)檢測(cè)D.對(duì)遮擋不敏感23、在計(jì)算機(jī)視覺的圖像去模糊任務(wù)中,需要恢復(fù)由于相機(jī)抖動(dòng)或物體運(yùn)動(dòng)導(dǎo)致的模糊圖像。假設(shè)一張夜景照片由于長(zhǎng)時(shí)間曝光而模糊,同時(shí)存在噪聲和低光照條件。以下哪種圖像去模糊算法在處理這種情況時(shí)效果較好?()A.盲去卷積算法B.基于正則化的去模糊算法C.深度學(xué)習(xí)的去模糊模型D.頻域去模糊方法24、在計(jì)算機(jī)視覺的應(yīng)用于工業(yè)檢測(cè)中,需要檢測(cè)產(chǎn)品表面的缺陷和瑕疵。假設(shè)我們要檢測(cè)手機(jī)屏幕上的劃痕和亮點(diǎn),以下哪種方法能夠?qū)崿F(xiàn)快速、準(zhǔn)確的缺陷檢測(cè),并且適應(yīng)不同的產(chǎn)品批次和生產(chǎn)環(huán)境?()A.基于機(jī)器視覺的傳統(tǒng)檢測(cè)方法,結(jié)合閾值和形態(tài)學(xué)操作B.基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,針對(duì)缺陷進(jìn)行訓(xùn)練C.基于紋理分析和模式識(shí)別的方法D.基于光學(xué)原理和物理模型的檢測(cè)方法25、假設(shè)要構(gòu)建一個(gè)能夠?qū)嬜髌愤M(jìn)行真?zhèn)舞b定的計(jì)算機(jī)視覺系統(tǒng),需要對(duì)作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書畫鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是26、計(jì)算機(jī)視覺中的表情識(shí)別用于分析人臉的表情狀態(tài)。假設(shè)要在一個(gè)在線教育平臺(tái)中檢測(cè)學(xué)生的學(xué)習(xí)狀態(tài)。以下關(guān)于表情識(shí)別的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)提取面部肌肉的運(yùn)動(dòng)特征來(lái)判斷表情B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動(dòng)學(xué)習(xí)表情的特征表示C.表情識(shí)別能夠準(zhǔn)確區(qū)分細(xì)微的表情變化,如困惑和專注D.表情識(shí)別不受面部遮擋和光照變化的影響,始終能夠準(zhǔn)確判斷27、在計(jì)算機(jī)視覺的實(shí)際應(yīng)用中,光照變化會(huì)對(duì)圖像的處理和分析產(chǎn)生影響。以下關(guān)于光照變化的描述,不正確的是()A.光照變化可能導(dǎo)致圖像的亮度、對(duì)比度和顏色發(fā)生改變,增加了圖像處理的難度B.一些預(yù)處理技術(shù),如直方圖均衡化,可以在一定程度上減輕光照變化的影響C.深度學(xué)習(xí)模型能夠自動(dòng)適應(yīng)各種光照變化,無(wú)需進(jìn)行額外的處理D.光照變化對(duì)于目標(biāo)檢測(cè)和跟蹤等任務(wù)的準(zhǔn)確性可能會(huì)產(chǎn)生較大的影響28、在計(jì)算機(jī)視覺的視頻理解任務(wù)中,例如理解一段體育比賽視頻中的精彩瞬間和戰(zhàn)術(shù),需要對(duì)視頻中的時(shí)空信息進(jìn)行有效建模。以下哪種方法在時(shí)空建模方面可能具有優(yōu)勢(shì)?()A.3D卷積神經(jīng)網(wǎng)絡(luò)B.長(zhǎng)短時(shí)記憶網(wǎng)絡(luò)C.注意力機(jī)制D.以上都是29、計(jì)算機(jī)視覺中的圖像配準(zhǔn)任務(wù)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張拍攝角度不同的城市風(fēng)景照片進(jìn)行配準(zhǔn)。以下關(guān)于圖像配準(zhǔn)方法的描述,哪一項(xiàng)是不正確的?()A.可以基于特征點(diǎn)匹配的方法,找到兩張圖像中的對(duì)應(yīng)點(diǎn),然后計(jì)算變換矩陣B.基于灰度信息的配準(zhǔn)方法通過(guò)比較圖像的像素值來(lái)實(shí)現(xiàn)配準(zhǔn)C.深度學(xué)習(xí)中的自監(jiān)督學(xué)習(xí)方法可以用于圖像配準(zhǔn),自動(dòng)學(xué)習(xí)圖像之間的對(duì)應(yīng)關(guān)系D.圖像配準(zhǔn)總是能夠達(dá)到像素級(jí)別的精確對(duì)齊,不存在任何誤差30、計(jì)算機(jī)視覺中的無(wú)人駕駛技術(shù)是一個(gè)綜合性的應(yīng)用領(lǐng)域。以下關(guān)于無(wú)人駕駛中的計(jì)算機(jī)視覺的說(shuō)法,不正確的是()A.計(jì)算機(jī)視覺在無(wú)人駕駛中用于環(huán)境感知、目標(biāo)檢測(cè)、路徑規(guī)劃和障礙物避讓等任務(wù)B.深度學(xué)習(xí)方法能夠?qū)崟r(shí)準(zhǔn)確地識(shí)別道路標(biāo)志、車輛和行人等物體C.無(wú)人駕駛中的計(jì)算機(jī)視覺系統(tǒng)已經(jīng)非常成熟,能夠應(yīng)對(duì)各種復(fù)雜的交通場(chǎng)景D.惡劣天氣條件和光照變化等因素仍然是無(wú)人駕駛中計(jì)算機(jī)視覺面臨的挑戰(zhàn)二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于深度學(xué)習(xí),實(shí)現(xiàn)對(duì)足球比賽中越位情況的檢測(cè)。2、(本題5分)對(duì)醫(yī)學(xué)X光圖像進(jìn)行分析,輔助醫(yī)生診斷病情。3、(本題5分)利用目標(biāo)檢測(cè)算法,在農(nóng)業(yè)圖像中檢測(cè)病蟲害。4、(本題5分)設(shè)計(jì)一個(gè)程序,通過(guò)計(jì)算機(jī)視覺識(shí)別不同品牌的打印機(jī)。5、(本題5分)對(duì)體育賽事的視頻進(jìn)行慢動(dòng)作分析,輔助裁判做出準(zhǔn)確判罰。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋計(jì)算機(jī)視覺在玻璃制造中的缺
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五農(nóng)行個(gè)人貸款抵押合同資產(chǎn)保全操作流程
- 2025年度綠色建筑項(xiàng)目融資及還款合同3篇
- 二零二五年度農(nóng)村土地流轉(zhuǎn)農(nóng)民公寓產(chǎn)權(quán)登記合同
- 2025年度美術(shù)作品版權(quán)授權(quán)與收益分成合同
- 2025個(gè)人信用卡透支額度調(diào)整合同補(bǔ)充協(xié)議3篇
- 二零二五年度城鄉(xiāng)規(guī)劃編制與實(shí)施監(jiān)督合同4篇
- 二零二五年度土地儲(chǔ)備項(xiàng)目土地資源評(píng)估委托合同
- 2025年度別墅裝修材料環(huán)保檢測(cè)認(rèn)證合同3篇
- 2025年度建筑工程合同履行與索賠風(fēng)險(xiǎn)防控指南2篇
- 第三人民醫(yī)院二零二五年度肉類配送服務(wù)及食品安全監(jiān)控協(xié)議3篇
- 充電樁巡查記錄表
- 阻燃材料的阻燃機(jī)理建模
- CJT 511-2017 鑄鐵檢查井蓋
- 配電工作組配電網(wǎng)集中型饋線自動(dòng)化技術(shù)規(guī)范編制說(shuō)明
- 職業(yè)分類表格
- 2024高考物理全國(guó)乙卷押題含解析
- 廣東省深圳高級(jí)中學(xué)2023-2024學(xué)年八年級(jí)下學(xué)期期中考試物理試卷
- 介入科圍手術(shù)期護(hù)理
- 青光眼術(shù)后護(hù)理課件
- 設(shè)立工程公司組建方案
- 《物理因子治療技術(shù)》期末考試復(fù)習(xí)題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論