黑龍江工程學(xué)院《深度學(xué)習(xí)初步》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
黑龍江工程學(xué)院《深度學(xué)習(xí)初步》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
黑龍江工程學(xué)院《深度學(xué)習(xí)初步》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
黑龍江工程學(xué)院《深度學(xué)習(xí)初步》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
黑龍江工程學(xué)院《深度學(xué)習(xí)初步》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁黑龍江工程學(xué)院《深度學(xué)習(xí)初步》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在智能家居領(lǐng)域的應(yīng)用不斷豐富。假設(shè)一個智能家居系統(tǒng)要利用人工智能實現(xiàn)自動化控制,以下關(guān)于其應(yīng)用的描述,哪一項是不正確的?()A.根據(jù)家庭成員的習(xí)慣和環(huán)境條件,自動調(diào)整燈光、溫度和家電設(shè)備B.利用語音識別和自然語言處理技術(shù),實現(xiàn)與用戶的自然交互C.人工智能可以完全理解用戶的所有需求和意圖,不會出現(xiàn)誤解D.結(jié)合傳感器數(shù)據(jù)和機器學(xué)習(xí)算法,實現(xiàn)能源的高效管理和節(jié)約2、人工智能中的多模態(tài)學(xué)習(xí)旨在融合多種不同類型的數(shù)據(jù),如圖像、文本、音頻等。假設(shè)要開發(fā)一個能夠同時理解視頻中的圖像內(nèi)容和音頻解說的系統(tǒng),以下哪種多模態(tài)學(xué)習(xí)方法在整合和理解這些異構(gòu)數(shù)據(jù)方面表現(xiàn)更為出色?()A.早期融合B.晚期融合C.注意力機制D.混合融合3、人工智能中的自動規(guī)劃和調(diào)度問題在許多領(lǐng)域都有應(yīng)用,如生產(chǎn)制造、物流配送等。假設(shè)一個工廠要安排生產(chǎn)任務(wù),需要考慮機器的可用性、訂單的優(yōu)先級和交貨日期等約束條件。以下哪種自動規(guī)劃算法在處理這種復(fù)雜的約束滿足問題上最為高效?()A.A*算法B.遺傳算法C.模擬退火算法D.蟻群算法4、在人工智能的醫(yī)療影像診斷中,深度學(xué)習(xí)模型可以輔助醫(yī)生發(fā)現(xiàn)病變。假設(shè)要評估一個深度學(xué)習(xí)模型在乳腺X光影像診斷中的性能,以下哪個指標是最重要的?()A.準確率B.召回率C.F1值D.特異性5、在人工智能的智能推薦系統(tǒng)中,冷啟動問題是指在新用戶或新物品加入時缺乏足夠的歷史數(shù)據(jù)進行準確推薦。假設(shè)要解決一個新上線電商平臺的冷啟動問題,以下哪種策略最為有效?()A.基于內(nèi)容的推薦B.基于熱門商品的推薦C.基于用戶社交關(guān)系的推薦D.以上策略結(jié)合使用6、深度學(xué)習(xí)在圖像識別領(lǐng)域取得了顯著的成果。假設(shè)我們正在訓(xùn)練一個深度神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物。如果訓(xùn)練數(shù)據(jù)中某些動物類別的樣本數(shù)量過少,可能會導(dǎo)致什么問題?()A.模型過擬合B.模型欠擬合C.訓(xùn)練速度加快D.模型的準確率提高7、在人工智能的優(yōu)化算法中,隨機梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用8、自然語言處理是人工智能的重要研究方向之一。假設(shè)要開發(fā)一個能夠自動回答用戶問題的智能客服系統(tǒng),以下關(guān)于自然語言處理在該系統(tǒng)中的應(yīng)用描述,哪一項是不準確的?()A.詞法分析、句法分析和語義理解等技術(shù)有助于理解用戶輸入的問題B.機器翻譯技術(shù)可以將用戶的問題翻譯成其他語言,以便更好地處理C.利用大規(guī)模的語料庫和預(yù)訓(xùn)練模型,可以提高回答的準確性和合理性D.自然語言處理技術(shù)能夠完美理解人類語言的所有含義和語境,不會出現(xiàn)誤解9、在人工智能的發(fā)展歷程中,深度學(xué)習(xí)技術(shù)的出現(xiàn)帶來了重大突破。假設(shè)我們正在研究圖像識別任務(wù),需要對大量的圖像數(shù)據(jù)進行訓(xùn)練,以識別不同的物體和場景。深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時具有獨特的優(yōu)勢。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項是不正確的?()A.能夠自動提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無需對圖像進行預(yù)處理C.其訓(xùn)練過程需要大量的計算資源和時間D.對于復(fù)雜的圖像分類任務(wù),準確率通常高于傳統(tǒng)機器學(xué)習(xí)算法10、在人工智能的聚類分析中,例如將客戶按照消費行為進行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進行分組D.隨機聚類算法,隨機分配數(shù)據(jù)到不同組11、在人工智能的語音識別領(lǐng)域,假設(shè)要開發(fā)一個能夠準確識別不同口音和背景噪聲下的語音識別系統(tǒng),以下關(guān)于語音識別技術(shù)的描述,正確的是:()A.語音識別系統(tǒng)只需要對清晰、標準的語音進行訓(xùn)練,就能應(yīng)對各種復(fù)雜情況B.增加訓(xùn)練數(shù)據(jù)中的口音和噪聲樣本可以提高系統(tǒng)在復(fù)雜環(huán)境下的識別能力C.語音識別的準確率只取決于聲學(xué)模型,與語言模型無關(guān)D.現(xiàn)有的語音識別技術(shù)已經(jīng)能夠達到100%的準確率,無需進一步改進12、知識圖譜是一種用于表示知識和關(guān)系的結(jié)構(gòu)化數(shù)據(jù)模型。以下關(guān)于知識圖譜的說法,不正確的是()A.知識圖譜可以整合來自不同來源的知識,構(gòu)建一個全面的知識體系B.知識圖譜中的節(jié)點表示實體,邊表示實體之間的關(guān)系C.知識圖譜在智能搜索、推薦系統(tǒng)和問答系統(tǒng)等領(lǐng)域有著重要的應(yīng)用D.構(gòu)建知識圖譜非常簡單,不需要大量的人力和時間投入13、人工智能中的預(yù)訓(xùn)練語言模型,如GPT-3,具有很強的語言理解和生成能力。假設(shè)要將這樣的預(yù)訓(xùn)練模型應(yīng)用于特定的任務(wù),以下關(guān)于模型應(yīng)用的描述,正確的是:()A.可以直接在預(yù)訓(xùn)練模型上進行微調(diào),就能適應(yīng)新的任務(wù),無需額外的訓(xùn)練數(shù)據(jù)B.預(yù)訓(xùn)練模型的參數(shù)固定,不能根據(jù)任務(wù)需求進行調(diào)整和優(yōu)化C.預(yù)訓(xùn)練模型的語言生成能力很強,但在特定領(lǐng)域的專業(yè)知識上可能存在不足D.預(yù)訓(xùn)練模型在所有自然語言處理任務(wù)中都能取得最優(yōu)的效果14、在人工智能的模型訓(xùn)練中,超參數(shù)的調(diào)整是一個關(guān)鍵步驟。假設(shè)正在訓(xùn)練一個用于文本生成的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),以下關(guān)于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經(jīng)驗和直覺,隨機選擇一組超參數(shù)進行試驗B.使用網(wǎng)格搜索或隨機搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關(guān)研究和實踐中常用的超參數(shù)設(shè)置D.利用自動超參數(shù)調(diào)整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)15、在人工智能的語音合成任務(wù)中,要生成自然流暢且富有情感的語音。假設(shè)需要模擬不同人的聲音特點和情感表達,以下哪種技術(shù)或方法是關(guān)鍵的?()A.基于深度學(xué)習(xí)的語音合成模型,學(xué)習(xí)語音特征B.使用固定的語音模板,進行簡單組合C.隨機生成語音的音調(diào)和語速D.不考慮情感因素,只生成清晰的語音二、簡答題(本大題共4個小題,共20分)1、(本題5分)談?wù)勅斯ぶ悄茉诨瘜W(xué)研究中的應(yīng)用。2、(本題5分)說明人工智能在反壟斷和競爭政策中的影響。3、(本題5分)解釋人工智能在財務(wù)管理中的作用。4、(本題5分)談?wù)勅斯ぶ悄苤械乃阉魉惴?。三、操作題(本大題共5個小題,共25分)1、(本題5分)利用Python的OpenCV庫,實現(xiàn)對圖像的閾值分割。嘗試不同的閾值方法,比較分割效果。2、(本題5分)使用機器學(xué)習(xí)算法對氣象數(shù)據(jù)進行分析,預(yù)測氣候變化的趨勢和影響,為應(yīng)對氣候變化提供決策支持。3、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個基于Transformer架構(gòu)的圖像問答模型,根據(jù)給定圖像回答相關(guān)問題。4、(本題5分)在Python中,運用粒子濾波算法對一個動態(tài)系統(tǒng)進行狀態(tài)估計。定義系統(tǒng)模型和觀測方程,展示濾波過程和估計結(jié)果。5、(本題5分)使用Python的PyTorch框架,構(gòu)建一個基于膠囊網(wǎng)絡(luò)的模型,用于圖像分類任務(wù),分析其與傳統(tǒng)卷積神經(jīng)網(wǎng)絡(luò)的差異。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)以某智能珠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論