2025年人教新起點(diǎn)高三數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第1頁(yè)
2025年人教新起點(diǎn)高三數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第2頁(yè)
2025年人教新起點(diǎn)高三數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第3頁(yè)
2025年人教新起點(diǎn)高三數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第4頁(yè)
2025年人教新起點(diǎn)高三數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年人教新起點(diǎn)高三數(shù)學(xué)下冊(cè)階段測(cè)試試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五六總分得分評(píng)卷人得分一、選擇題(共6題,共12分)1、已知不等式ax2-5x+b>0的解集為{x|x<-或x>},則不等式bx2-5x+a>0的解集為()A.{x|-<x<}B.{x|x<-或x>}C.{x|-3<x<2}D.{x|x<-3或x>2}2、如圖,在地面上共線的三點(diǎn)A,B,C處測(cè)得一建筑物的仰角分別為30°,45°,60°,且AB=BC=60m,則建筑物的高度為()A.15mB.20mC.25mD.30m3、在正方體ABCD-A1B1C1D1中,M,N分別C1D1,BC是的中點(diǎn),則下列判斷正確的是()A.MN∥BD1B.MN⊥AB1C.MN∥平面BDD1D.MN⊥平面AB1C4、某空間幾何體的三視圖如圖所示,該空間幾何體的體積是()A.B.10C.D.5、【題文】觀察下列等式,根據(jù)上述規(guī)律,()A.B.C.D.6、有下列四個(gè)命題;其中真命題有:()

①“若則互為相反數(shù)”的逆命題。

②“全等三角形的面積相等”的否命題。

③“若則有實(shí)根”的逆命題。

④“不等邊三角形的三個(gè)內(nèi)角相等”的逆否命題,其中真命題的序號(hào)為()A.①③B.②③C.①②D.③④評(píng)卷人得分二、填空題(共9題,共18分)7、設(shè)橢圓C:+=1與函數(shù)y=tan的圖象相交于A1,A2兩點(diǎn),若點(diǎn)P在橢圓C上,且直線PA2的斜率的取值范圍[-2,-1],那么直線PA1斜率的取值范圍是____.8、已知A={(x,y)|x2+y2=1},B={(x,y)|+=1},若A∩B是單元素集,則a,b滿足的關(guān)系式為_(kāi)___.9、若f(x+1)=x2-x,則f(0)=____.10、已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9構(gòu)成等比數(shù)列{bn}的前3項(xiàng),則=____.11、不論k為何值,直線(2k-1)x-(k-2)y-(k+4)=0恒過(guò)的一個(gè)定點(diǎn)是____.12、設(shè)x,y滿足約束條件,若目標(biāo)函數(shù)3x+y的最大值為6,則a=____.13、已知i是虛數(shù)單位,若復(fù)數(shù)(1+ai)(2+i)是純虛數(shù),則實(shí)數(shù)a等于____.14、函數(shù)f(x)=的單調(diào)遞增區(qū)間是.15、利用獨(dú)立性檢驗(yàn)來(lái)判斷兩個(gè)分類(lèi)變量X和Y是否有關(guān)系,通過(guò)查閱下表來(lái)確定“X和Y有關(guān)系”的可信度.為了調(diào)查用電腦時(shí)間與視力下降是否有關(guān)系,現(xiàn)從某地網(wǎng)民中抽取100位居民進(jìn)行調(diào)查.經(jīng)過(guò)計(jì)算得那么就有_______________%的根據(jù)認(rèn)為用電腦時(shí)間與視力下降有關(guān)系.。0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828評(píng)卷人得分三、判斷題(共5題,共10分)16、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.

(1)A={1,3,5},B={1,2,3,4,5,6}.____;

(2)A={1,3,5},B={1,3,6,9}.____;

(3)A={0},B={x|x2+1=0}.____;

(4)A={a,b,c,d},B={d,b,c,a}.____.17、已知函數(shù)f(x)=4+ax-1的圖象恒過(guò)定點(diǎn)p,則點(diǎn)p的坐標(biāo)是(1,5)____.(判斷對(duì)錯(cuò))18、判斷集合A是否為集合B的子集;若是打“√”,若不是打“×”.

(1)A={1,3,5},B={1,2,3,4,5,6}.____;

(2)A={1,3,5},B={1,3,6,9}.____;

(3)A={0},B={x|x2+1=0}.____;

(4)A={a,b,c,d},B={d,b,c,a}.____.19、空集沒(méi)有子集.____.20、任一集合必有兩個(gè)或兩個(gè)以上子集.____.評(píng)卷人得分四、證明題(共4題,共20分)21、在四面體S-ABCD中;底面為矩形,SA⊥平面ABCD,M,N分別為AB,SC的中點(diǎn).

(1)求證:MN⊥CD;

(2)若∠SDA=45°,求證:MN⊥平面SCD.22、如圖,三棱錐ABC-A1B1C1的底面ABC是正三角形,A1D⊥平面ABC;D是AC的中點(diǎn).

(1)求證:A1C1⊥A1B;

(2)求證:B1C∥平面A1BD.23、試用綜合法或分析法證明:已知a>b>c,求證:++>0.24、如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,,B1C1∥BC且,二面角A1-AB-C是直二面角。

(1)求證:A1B1⊥平面AA1C;

(2)求證:AB1∥平面A1C1C.評(píng)卷人得分五、作圖題(共2題,共6分)25、(2015秋?吉林校級(jí)月考)給出平面區(qū)域如圖所示,其中A(1,1),B(2,5),C(4,3)若使目標(biāo)函數(shù)z=ax-y僅在點(diǎn)C處取得最大值,則a的取值范圍是____.26、已知算法如下表所示:(這里S1,S2;分別代表第一步,第二步,)

(1)指出其功能(用數(shù)學(xué)式子表達(dá));

(2)畫(huà)出該算法的算法框圖.評(píng)卷人得分六、簡(jiǎn)答題(共1題,共5分)27、如圖,在直角梯形ABCD中,AD//BC,當(dāng)E、F分別在線段AD、BC上,且AD=4,CB=6,AE=2,現(xiàn)將梯形ABCD沿EF折疊,使平面ABFE與平面EFCD垂直。1.判斷直線AD與BC是否共面,并證明你的結(jié)論;2.當(dāng)直線AC與平面EFCD所成角為多少時(shí),二面角A—DC—E的大小是60°。參考答案一、選擇題(共6題,共12分)1、C【分析】【分析】根據(jù)所給的一元二次不等式的解集,寫(xiě)出對(duì)應(yīng)的一元二次方程的解,根據(jù)根與系數(shù)的關(guān)系得到不等式的系數(shù)的值,解出一元二次不等式得到解集.【解析】【解答】解:因?yàn)閍x2-5x+b>0的解集為{x|x<-或x>};

∴ax2-5x+b=0的解是x=-,x=

∴=,=

解得a=30,b=-5.

則不等式bx2-5x+a>0變?yōu)?5x2-5x+30>0;

∴x2+x-6<0;

解得|-3<x<2

故選C2、D【分析】【分析】設(shè)P在平面中的射影為D,則CD=h,DB=h,DA=h,在△DBC,△DBA中,利用余弦定理,即可得出結(jié)論【解析】【解答】解:設(shè)P在平面中的射影為D,則CD=h,DB=h,DA=h;

∵AB=BC=60m;

∴h2=h2+3600-120hcos∠DBC,3h2=h2+3600-120hcos∠DBA;

相加可得h2=2h2+7200;

∴h2=5400;

∴h=30m.

故選:D.3、C【分析】【分析】記AC∩BD=O,則MN∥OD1,利用線面平行的判定可得MN∥平面BD1D.【解析】【解答】解:記AC∩BD=O.

∵正方體ABCD-A1B1C1D1中,M,N分別C1D1;BC是的中點(diǎn);

∴ON∥D1M∥CD,ON=D1M=CD;

∴MNOD1為平行四邊形;

∴MN∥OD1;

∵M(jìn)N?平面BD1D,OD1?平面BD1D;

∴MN∥平面BD1D.

故選:C.4、C【分析】【解析】試題分析:該幾何體是一個(gè)三棱錐,底面為直角邊長(zhǎng)分別為4,5的直角三角形,幾何體的高為4,所以,該空間幾何體的體積是故選C??键c(diǎn):三視圖,幾何體體積計(jì)算?!窘馕觥俊敬鸢浮緾5、C【分析】【解析】:歸納得【解析】【答案】:C6、A【分析】【解答】“若則互為相反數(shù)”的逆命題是“若互為相反數(shù),則”正確;

“全等三角形的面積相等”的逆命題不正確;所以否命題不正確;

“若則有實(shí)根”的逆命題“若有實(shí)根,則”正確;

“不等邊三角形的三個(gè)內(nèi)角相等”的原命題錯(cuò)誤;所以逆否命題錯(cuò)誤。

【分析】原命題與逆否命題真假一致,逆命題與否命題真假一致,屬于簡(jiǎn)單題。二、填空題(共9題,共18分)7、略

【分析】【分析】橢圓C:+=1與函數(shù)y=tan的圖象相交于A1,A2兩點(diǎn),可知:A1,A2兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),設(shè)A1(x1,y1),A2(-x1,-y1),P(x0,y0),分別代入橢圓方程可得:=.由于直線PA2的斜率k1的取值范圍[-2,-1],可得-2≤≤-1,==k2,可得k1k2=.即可得出.【解析】【解答】解:∵橢圓C:+=1與函數(shù)y=tan的圖象相交于A1,A2兩點(diǎn);

∴A1,A2兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),設(shè)A1(x1,y1),A2(-x1,-y1),=1,=.

設(shè)P(x0,y0),則=1,可得:=.

∴=.

∵直線PA2的斜率k1的取值范圍[-2;-1];

∴-2≤≤-1;

==k2;

∴k1k2===.

∴;

∴-1;

解得.

那么直線PA1斜率的取值范圍是.

故答案為:.8、略

【分析】【分析】A中方程表示圓心為原點(diǎn),半徑為1的圓上點(diǎn)集,B中方程表示一條直線,根據(jù)A與B的交集為單元素集,得到直線與圓相切,即可確定出a與b滿足的關(guān)系式.【解析】【解答】解:A中x2+y2=1;表示圓心為(0,0),半徑為1的圓;

B中+=1,表示直線bx+ay-ab=0;

∵A∩B是單元素集;

∴直線與圓相切,即圓心到直線的距離d=r;

∴=1,整理得:a2+b2=a2b2.

故答案為:a2+b2=a2b29、略

【分析】【分析】根據(jù)函數(shù)的解析式令x=-1即可.【解析】【解答】解:∵f(x+1)=x2-x;

∴f(0)=f(-1+1)=(-1)2-(-1)=1+1=2;

故答案為:210、略

【分析】【分析】a1,a3,a9構(gòu)成等比數(shù)列{bn}的前3項(xiàng),可得=a1a9,化為:a1=d.代入,即可得出.【解析】【解答】解:∵a1,a3,a9構(gòu)成等比數(shù)列{bn}的前3項(xiàng);

∴=a1a9;

∴=a1(a1+8d);

化為:a1=d.

∴===.

故答案為:.11、略

【分析】【分析】把所給的直線分離參數(shù),再令參數(shù)的系數(shù)等于零,即可求得定點(diǎn)的坐標(biāo).【解析】【解答】解:直線(2k-1)x-(k-2)y-(k+4)=0;即k(2x-y-1)+(-x+2y-4)=0;

一定經(jīng)過(guò)直線2x-y-1=0和直線-x+2y-4=0的交點(diǎn)(2;3);

故答案為:(2,3).12、略

【分析】【分析】由題意可得點(diǎn)(2,0)為區(qū)域最右側(cè)的點(diǎn),故直線x+2y-a=0必經(jīng)過(guò)點(diǎn)(2,0),代值可解a.【解析】【解答】解:由題意可知z=3x+y取最大值6時(shí);直線y=-3x+6過(guò)點(diǎn)(2,0);

則點(diǎn)(2;0)必在線性規(guī)劃區(qū)域內(nèi),且可以使一條斜率為-3的直線經(jīng)過(guò)該點(diǎn)時(shí)取最大值;

∴點(diǎn)(2;0)為區(qū)域最右側(cè)的點(diǎn),故直線x+2y-a=0必經(jīng)過(guò)點(diǎn)(2,0);

∴2+0-a=0;解得a=2.

故答案為:2.13、略

【分析】【分析】利用純虛數(shù)的定義、復(fù)數(shù)的運(yùn)算法則即可得出.【解析】【解答】解:∵復(fù)數(shù)(1+ai)(2+i)=(2-a)+(2a+1)i是純虛數(shù);

∴;解得a=2.

故答案為:2.14、略

【分析】f'(x)==>0,即cosx>-結(jié)合三角函數(shù)圖象知,2kπ-<2kπ+(k∈Z),即函數(shù)f(x)的單調(diào)遞增區(qū)間是(2kπ-2kπ+)(k∈Z).【解析】【答案】(2kπ-2kπ+)(k∈Z)15、略

【分析】試題分析:根據(jù)表格發(fā)現(xiàn)對(duì)應(yīng)的是所以根據(jù)獨(dú)立性檢驗(yàn)原理可知有95%的根據(jù)認(rèn)為用電腦時(shí)間與視力下降有關(guān)系.考點(diǎn):本小題主要考獨(dú)立性檢驗(yàn)原理.【解析】【答案】95三、判斷題(共5題,共10分)16、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說(shuō)明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;

(2)5∈A;而5?B,∴A不是B的子集;

(3)B=?;∴A不是B的子集;

(4)A;B兩集合的元素相同,A=B,∴A是B的子集.

故答案為:√,×,×,√.17、√【分析】【分析】已知函數(shù)f(x)=ax-1+4,根據(jù)指數(shù)函數(shù)的性質(zhì),求出其過(guò)的定點(diǎn).【解析】【解答】解:∵函數(shù)f(x)=ax-1+4;其中a>0,a≠1;

令x-1=0,可得x=1,ax-1=1;

∴f(x)=1+4=5;

∴點(diǎn)P的坐標(biāo)為(1;5);

故答案為:√18、√【分析】【分析】根據(jù)子集的概念,判斷A的所有元素是否為B的元素,是便說(shuō)明A是B的子集,否則A不是B的子集.【解析】【解答】解:(1)1;3,5∈B,∴集合A是集合B的子集;

(2)5∈A;而5?B,∴A不是B的子集;

(3)B=?;∴A不是B的子集;

(4)A;B兩集合的元素相同,A=B,∴A是B的子集.

故答案為:√,×,×,√.19、×【分析】【分析】根據(jù)空集的性質(zhì),分析可得空集是其本身的子集,即可得答案.【解析】【解答】解:根據(jù)題意;空集是任何集合的子集,是任何非空集合的真子集;

即空集是其本身的子集;則原命題錯(cuò)誤;

故答案為:×.20、×【分析】【分析】特殊集合?只有一個(gè)子集,故任一集合必有兩個(gè)或兩個(gè)以上子集錯(cuò)誤.【解析】【解答】解:?表示不含任何元素;?只有本身一個(gè)子集,故錯(cuò)誤.

故答案為:×.四、證明題(共4題,共20分)21、略

【分析】【分析】(1)取SD中點(diǎn)E;連接AE,NE,可證MN∥AE,由SA⊥CD,AD⊥CD,AD∩AS=A,可證CD⊥平面SAD,從而可證CD⊥AE,即可證明MN⊥CD.

(2)先證明AE⊥SD,由(1)可得AE⊥CD,CD∩SD=D,即可證明AE⊥平面SDC,由MN∥AE,即可得證.【解析】【解答】證明:(1)取SD中點(diǎn)E;連接AE,NE;

則NE=CD=AM;NE∥CD∥AM;

∴四邊形AMNE為平行四邊形;

∴MN∥AE;

∵SA⊥平面ABCD;CD?平面ABCD;

∴SA⊥CD;

∵底面為矩形;AD⊥CD,AD∩AS=A;

∴CD⊥平面SAD;

∵AE?平面SAD;

∴CD⊥AE;

∴由MN∥AE;可得MN⊥CD.

(2)∵SA⊥平面ABCD;∠SDA=45°;

∴SA=AD;E為SD中點(diǎn);

∴AE⊥SD;

∵由(1)可得AE⊥CD;CD∩SD=D;

∴AE⊥平面SDC;

∵M(jìn)N∥AE,可得MN⊥平面SCD.22、略

【分析】【分析】(1)連接BD,證明AC⊥平面A1BD,即可證明A1C1⊥A1B;

(2)連結(jié)AB1交A1B于點(diǎn)E,連結(jié)DE.證出DE為△AB1C的中位線,得DE∥B1C,利用線面平行的判定定理,即可證出B1C∥平面A1BD.【解析】【解答】證明:(1)連接BD;則。

∵A1D⊥平面ABC;AC?平面ABC;

∴A1D⊥AC;

∵底面ABC是正三角形;D是AC的中點(diǎn);

∴AC⊥BD;

∵A1D∩BD=D;

∴AC⊥平面A1BD;

∴AC⊥A1B;

∵A1C1∥AC;

∴A1C1⊥A1B;

(2)連結(jié)AB1,交A1B于點(diǎn)E;連結(jié)DE

∵四邊形AA1B1B為平行四邊形;

∴E為AB1的中點(diǎn);

∵D是AC的中點(diǎn),可得DE為△AB1C的中位線;

∴DE∥B1C;

∵DE?平面A1BD,B1C?平面A1BD;

∴B1C∥平面A1BD.23、略

【分析】【分析】證法一:(分析法)從結(jié)論入手,為了證明;逐步分析使結(jié)論成立的充分條件,直到條件具備即可;

證法二:(綜合法)從已知入手,利用不等式的性質(zhì),由a>b>c?a-c>a-b>0,b-c>0?>0,再進(jìn)一步即可證得結(jié)論成立.【解析】【解答】證法一:(分析法)

為了證明;

只需要證明;(2分)

∵a>b>,c∴a-c>a-b>0,b-c>0;(4分)

∴.(8分)

∴成立.(10分)

∴>0成立.(12分)

證法二:(綜合法)

∵a>b>c;

∴a-c>a-b>0,b-c>0.

∴>0.

∴.

∴>0.(類(lèi)比給分)24、略

【分析】【分析】(1)根據(jù)勾股定理的逆定理,可得AB⊥AC,又因?yàn)樗倪呅蜛1ABB1是正方形,所以AB⊥AA1,從而得到AB⊥平面AA1C,再證AB∥A1B1,可得A1B1⊥平面AA1C;

(2)取BC中點(diǎn)D,連接AD,B1D,C1D.證明四邊形B1C1DB是平行四邊形,可得C1D∥B1B,進(jìn)而可證AD∥平面A1C1C;同理,B1D∥平面A1C1C,利用面面平行的判定,可得平面ADB1∥平面A1C1C,從而可得AB1∥平面A1C1C【解析】【解答】證明:(1)因?yàn)锳B=AC,

所以AB2+AC2=BC2;所以AB⊥AC.

又因?yàn)樗倪呅蜛1ABB1是正方形,所以AB⊥AA1.

又因?yàn)锳A1∩AC=A,所以AB⊥平面AA1C.

因?yàn)樗倪呅蜛1ABB1是正方形,所以AB∥A1B1;

所以A1B1⊥平面AA1C

(2)取BC的中點(diǎn)D,連接AD,B1D,C1D

因?yàn)锽1C1∥BC且

所以B1C1DB是平行四邊形,故C1D1∥B1B,且C1D1=B1B

又A1A∥B1B且A1A=B1B,所以A1A∥C1D,且A1A=C1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論