版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省漳州市七校2023屆高三3月總復習質(zhì)檢數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.3.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值4.設(shè)為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.5.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.6.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.7.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.58.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.9.命題“”的否定為()A. B.C. D.10.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.1011.已知傾斜角為的直線與直線垂直,則()A. B. C. D.12.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,若恒成立,則實數(shù)的取值范圍是____.14.對定義在上的函數(shù),如果同時滿足以下兩個條件:(1)對任意的總有;(2)當,,時,總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實數(shù)a的取值范圍為________.15.已知,記,則的展開式中各項系數(shù)和為__________.16.已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是___三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點為,過上一點()作兩條傾斜角互補的直線分別與交于,兩點,(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.18.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關(guān)于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關(guān)于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計分別為,,參考數(shù)據(jù):.19.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.20.(12分)已知動圓恒過點,且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數(shù)使,若存在,求出的值;若不存在,說明理由.21.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.22.(10分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應如下表:學生序號1234567數(shù)學成績60657075858790物理成績70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望;②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學的數(shù)學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.7683812526
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】分析:根據(jù)復數(shù)的運算,求得復數(shù)z,再利用復數(shù)的表示,即可得到復數(shù)對應的點,得到答案.詳解:由題意,復數(shù)z=2i1-i所以復數(shù)z在復平面內(nèi)對應的點的坐標為(-1,-1),位于復平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復數(shù)的四則運算及復數(shù)的表示,其中根據(jù)復數(shù)的四則運算求解復數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力.2.B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).3.D【解析】
根據(jù)新增確診曲線的走勢可判斷A選項的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項的正誤;根據(jù)月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結(jié)論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.4.C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問題,考查學生等價轉(zhuǎn)化的能力,是一道容易題.5.C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質(zhì)的應用,其中解答中熟記雙曲線的幾何性質(zhì),準確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.6.B【解析】
根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉(zhuǎn)化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結(jié)果;解題關(guān)鍵是需要通過夾角取值范圍的分析,得到的最小值.7.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.8.B【解析】
畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.9.C【解析】
套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎(chǔ)題.10.C【解析】
畫出函數(shù)和的圖像,和均關(guān)于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數(shù)關(guān)于點中心對稱是解題的關(guān)鍵.11.D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式即可得出結(jié)果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關(guān)系,同角三角函數(shù)基本關(guān)系式,考查計算能力,屬于基礎(chǔ)題.12.B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.二、填空題:本題共4小題,每小題5分,共20分。13.(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值14.【解析】
由不等式恒成立問題采用分離變量最值法:對任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因為是定義在上G函數(shù),所以對任意的總有,則對任意的恒成立,解得,當時,又因為,,時,總有成立,即恒成立,即恒成立,又此時的最小值為,即恒成立,又因為解得.故答案為:【點睛】本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學生分析理解能力,屬于中檔題.15.【解析】
根據(jù)定積分的計算,得到,令,求得,即可得到答案.【詳解】根據(jù)定積分的計算,可得,令,則,即的展開式中各項系數(shù)和為.【點睛】本題主要考查了定積分的應用,以及二項式定理的應用,其中解答中根據(jù)定積分的計算和二項式定理求得的表示是解答本題的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.16.【解析】
利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結(jié)果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時的分類討論化簡三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】
(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達定理計算.【詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【點睛】本題考查直線與拋物線的位置關(guān)系的應用,在處理直線與拋物線位置關(guān)系的問題時,通常要涉及韋達定理來求解,本題查學生的運算求解能力,是一道中檔題.18.(1)作圖見解析;更適合(2)(3)預報值為245【解析】
(1)由散點圖即可得到答案;(2)把兩邊取自然對數(shù),得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關(guān)于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數(shù)量關(guān)于的回歸方程類型;(2)把兩邊取自然對數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當時,計算可得;即溫度為27℃時,該種細菌的繁殖數(shù)量的預報值為245.【點睛】本題考查求非線性回歸方程及其應用的問題,考查學生數(shù)據(jù)處理能力及運算能力,是一道中檔題.19.(1)答案見解析(2)【解析】
(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時,時,①當時,恒成立,在單調(diào)遞增,無極值,不合題意.②當時,可得當時,,當時,.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當時,可得當時,,當時,.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數(shù)a的取值范圍為.【點睛】本題考查了函數(shù)的單調(diào)性,最值問題,考查導數(shù)的應用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.20.(1);(2)存在,.【解析】
(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點的坐標,即可求得方程;(2)由拋物線方程求得點的坐標,設(shè)出直線的方程,利用導數(shù)求得點的坐標,聯(lián)立直線的方程和拋物線方程,結(jié)合韋達定理,求得,進而求得與之間的大小關(guān)系,即可求得參數(shù).【詳解】(1)由題意得,點與點的距離始終等于點到直線的距離,由拋物線的定義知圓心的軌跡是以點為焦點,直線為準線的拋物線,則,.∴圓心的軌跡方程為.(2)因為是軌跡上橫坐標為2的點,由(1)不妨取,所以直線的斜率為1.因為,所以設(shè)直線的方程為,.由,得,則在點處的切線斜率為2,所以在點處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),,則,.因為點,,在直線上,所以,,所以,所以.∴故存在,使得.【點睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導數(shù)的幾何意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024門禁工程合同
- 2024閘門采購合同模板大全
- 2024榨菜種植與農(nóng)業(yè)電商人才培訓合作合同3篇
- 2025年度文化旅游代理股權(quán)轉(zhuǎn)讓及項目運營合同4篇
- 2025年度智能社區(qū)視頻監(jiān)控系統(tǒng)工程承包協(xié)議4篇
- 2025年度應急物流承運商合作協(xié)議范本4篇
- 2024音樂制作合同:錄音工作室合同范本版B版
- 2025年度桉樹苗木線上線下融合發(fā)展合同3篇
- 2025年度知識產(chǎn)權(quán)運營丨合伙人共同運營專利技術(shù)的合同4篇
- 2024舞臺建設(shè)施工合同協(xié)議書
- 2024版智慧電力解決方案(智能電網(wǎng)解決方案)
- 公司SWOT分析表模板
- 小學預防流行性感冒應急預案
- 肺癌術(shù)后出血的觀察及護理
- 聲紋識別簡介
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設(shè)-第1篇
- 基于Android的天氣預報系統(tǒng)的設(shè)計與實現(xiàn)
- 沖鋒舟駕駛培訓課件
- 美術(shù)家協(xié)會會員申請表
- 聚合收款服務流程
- 中石化浙江石油分公司中石化溫州靈昆油庫及配套工程項目環(huán)境影響報告書
評論
0/150
提交評論