![鄭州鐵路職業(yè)技術(shù)學(xué)院《增強(qiáng)現(xiàn)實(shí)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view14/M09/06/05/wKhkGWecJDGAMXiQAALr8nAvPk4751.jpg)
![鄭州鐵路職業(yè)技術(shù)學(xué)院《增強(qiáng)現(xiàn)實(shí)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view14/M09/06/05/wKhkGWecJDGAMXiQAALr8nAvPk47512.jpg)
![鄭州鐵路職業(yè)技術(shù)學(xué)院《增強(qiáng)現(xiàn)實(shí)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view14/M09/06/05/wKhkGWecJDGAMXiQAALr8nAvPk47513.jpg)
![鄭州鐵路職業(yè)技術(shù)學(xué)院《增強(qiáng)現(xiàn)實(shí)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view14/M09/06/05/wKhkGWecJDGAMXiQAALr8nAvPk47514.jpg)
![鄭州鐵路職業(yè)技術(shù)學(xué)院《增強(qiáng)現(xiàn)實(shí)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view14/M09/06/05/wKhkGWecJDGAMXiQAALr8nAvPk47515.jpg)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁鄭州鐵路職業(yè)技術(shù)學(xué)院
《增強(qiáng)現(xiàn)實(shí)技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的可解釋性研究中,對(duì)于一個(gè)復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?()A.特征重要性分析,確定輸入特征對(duì)輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋,描述模型的推理過程D.以上都是2、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開發(fā)一個(gè)系統(tǒng)來監(jiān)測(cè)農(nóng)田中的病蟲害情況,需要能夠準(zhǔn)確識(shí)別病蟲害的類型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法3、人工智能中的自動(dòng)推理技術(shù)在邏輯證明、問題求解等方面發(fā)揮著作用。假設(shè)我們要證明一個(gè)復(fù)雜的數(shù)學(xué)定理,使用自動(dòng)推理系統(tǒng)。那么,關(guān)于自動(dòng)推理,以下哪一項(xiàng)是不正確的?()A.可以基于邏輯規(guī)則和已知事實(shí)進(jìn)行推導(dǎo)B.能夠處理不確定和模糊的信息C.對(duì)于復(fù)雜問題可能會(huì)面臨計(jì)算復(fù)雜性的挑戰(zhàn)D.其結(jié)果的正確性完全依賴于輸入的前提和規(guī)則的準(zhǔn)確性4、人工智能中的機(jī)器學(xué)習(xí)算法可以分為監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)和強(qiáng)化學(xué)習(xí)等。假設(shè)要對(duì)一組未標(biāo)記的數(shù)據(jù)進(jìn)行分類,以下哪種學(xué)習(xí)算法可能最為適用?()A.監(jiān)督學(xué)習(xí)中的線性回歸算法,通過擬合數(shù)據(jù)的線性關(guān)系進(jìn)行分類B.無監(jiān)督學(xué)習(xí)中的K-Means聚類算法,自動(dòng)將數(shù)據(jù)分為不同的簇C.強(qiáng)化學(xué)習(xí)中的Q-Learning算法,通過與環(huán)境交互學(xué)習(xí)最優(yōu)策略D.以上算法都不適合對(duì)未標(biāo)記數(shù)據(jù)進(jìn)行分類5、假設(shè)在一個(gè)智能農(nóng)業(yè)的應(yīng)用中,需要利用人工智能技術(shù)來監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況并預(yù)測(cè)病蟲害的發(fā)生,以下哪種數(shù)據(jù)源和分析方法可能是重要的組成部分?()A.衛(wèi)星圖像和圖像分析B.傳感器數(shù)據(jù)和時(shí)間序列分析C.氣象數(shù)據(jù)和機(jī)器學(xué)習(xí)模型D.以上都是6、對(duì)于一個(gè)智能聊天機(jī)器人,需要理解用戶輸入的自然語言并生成合理的回復(fù)。假設(shè)用戶提出了一個(gè)復(fù)雜且含義模糊的問題,聊天機(jī)器人要準(zhǔn)確理解用戶的意圖并提供有用的回答。以下哪種技術(shù)或方法對(duì)于提高聊天機(jī)器人的理解和生成能力是關(guān)鍵的?()A.構(gòu)建大規(guī)模的語料庫,通過匹配來生成回復(fù)B.運(yùn)用深度學(xué)習(xí)模型,如Transformer架構(gòu)進(jìn)行訓(xùn)練C.基于模板的回復(fù)生成,限制回復(fù)的多樣性D.不考慮上下文,只根據(jù)問題的關(guān)鍵詞生成回復(fù)7、在人工智能的語音識(shí)別任務(wù)中,需要將人類的語音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語速和背景噪音下的語音,為了提高語音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語音進(jìn)行識(shí)別8、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過估計(jì)狀態(tài)值或動(dòng)作值來選擇最優(yōu)動(dòng)作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動(dòng)作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場(chǎng)景中表現(xiàn)不同9、人工智能中的深度學(xué)習(xí)模型通常需要大量的計(jì)算資源進(jìn)行訓(xùn)練。假設(shè)一個(gè)研究團(tuán)隊(duì)資源有限。以下關(guān)于在有限資源下訓(xùn)練模型的策略描述,哪一項(xiàng)是不正確的?()A.可以使用數(shù)據(jù)增強(qiáng)技術(shù),通過對(duì)原始數(shù)據(jù)進(jìn)行隨機(jī)變換來增加數(shù)據(jù)量B.選擇輕量級(jí)的模型架構(gòu),減少參數(shù)數(shù)量和計(jì)算量C.降低模型的訓(xùn)練精度,如使用低精度數(shù)值表示,以加快訓(xùn)練速度D.為了保證模型性能,無論資源如何有限,都不能對(duì)模型進(jìn)行任何簡(jiǎn)化和壓縮10、人工智能中的語音合成技術(shù)旨在將文本轉(zhuǎn)換為自然流暢的語音。假設(shè)我們要為一款智能語音助手開發(fā)語音合成功能,以下關(guān)于語音合成的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過拼接預(yù)先錄制的語音片段來實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法能夠生成更自然的語音語調(diào)C.語音合成的質(zhì)量只取決于聲學(xué)模型D.韻律和情感的表達(dá)是語音合成中的重要挑戰(zhàn)11、人工智能中的自動(dòng)機(jī)器學(xué)習(xí)(AutoML)旨在自動(dòng)化模型的選擇和調(diào)優(yōu)過程。假設(shè)一個(gè)企業(yè)沒有專業(yè)的數(shù)據(jù)科學(xué)家,希望使用AutoML來構(gòu)建模型。以下關(guān)于自動(dòng)機(jī)器學(xué)習(xí)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.AutoML可以自動(dòng)搜索合適的算法、超參數(shù)和特征工程方法B.能夠降低模型開發(fā)的門檻,使非專業(yè)人員也能構(gòu)建有效的人工智能模型C.AutoML生成的模型總是優(yōu)于由經(jīng)驗(yàn)豐富的數(shù)據(jù)科學(xué)家手動(dòng)構(gòu)建的模型D.但仍需要一定的人工干預(yù)和監(jiān)督,以確保模型的合理性和可靠性12、在人工智能的醫(yī)療應(yīng)用中,例如疾病預(yù)測(cè)和診斷輔助,假設(shè)需要確保模型的結(jié)果具有可解釋性和臨床可信賴性。以下哪種方法能夠增加模型的可信度?()A.與醫(yī)生的經(jīng)驗(yàn)和專業(yè)知識(shí)結(jié)合進(jìn)行驗(yàn)證B.只依靠模型的輸出,不進(jìn)行額外驗(yàn)證C.隱藏模型的內(nèi)部工作原理,避免質(zhì)疑D.不考慮臨床實(shí)際情況,追求高準(zhǔn)確率13、在人工智能的情感計(jì)算領(lǐng)域,除了文本和語音,面部表情的分析也具有重要意義。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)分析人類面部表情來推斷情感狀態(tài)的系統(tǒng),以下哪種方法在準(zhǔn)確性和實(shí)時(shí)性方面面臨更大的挑戰(zhàn)?()A.基于傳統(tǒng)計(jì)算機(jī)視覺的方法B.基于深度學(xué)習(xí)的方法C.基于傳感器的方法D.以上方法難度相當(dāng)14、人工智能在物流配送中的路徑規(guī)劃方面具有應(yīng)用潛力。假設(shè)要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.考慮交通狀況、貨物重量和配送時(shí)間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時(shí)間內(nèi)找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會(huì)受到任何突發(fā)情況的影響D.實(shí)時(shí)更新路況信息,動(dòng)態(tài)調(diào)整配送路徑,提高配送效率15、在人工智能的對(duì)話系統(tǒng)中,需要實(shí)現(xiàn)自然流暢的交互。假設(shè)要開發(fā)一個(gè)客服機(jī)器人,以下關(guān)于對(duì)話系統(tǒng)的描述,正確的是:()A.只要對(duì)話系統(tǒng)能夠回答用戶的問題,就不需要考慮回答的方式和語氣B.對(duì)話系統(tǒng)可以完全理解用戶的意圖和情感,無需進(jìn)一步的優(yōu)化C.利用大規(guī)模的對(duì)話數(shù)據(jù)進(jìn)行訓(xùn)練,并結(jié)合語義理解和生成技術(shù),可以提高客服機(jī)器人的對(duì)話能力D.對(duì)話系統(tǒng)的性能不受語言多樣性和文化差異的影響二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡(jiǎn)述人工智能在培訓(xùn)與發(fā)展中的作用。2、(本題5分)簡(jiǎn)述深度學(xué)習(xí)的概念和發(fā)展。3、(本題5分)解釋早停法在模型訓(xùn)練中的應(yīng)用。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用Python的Keras庫,構(gòu)建一個(gè)基于強(qiáng)化學(xué)習(xí)的智能電網(wǎng)優(yōu)化模型。優(yōu)化電力分配和負(fù)載平衡,提高電網(wǎng)效率。2、(本題5分)利用Python的OpenCV庫,實(shí)現(xiàn)對(duì)圖像的閾值分割。嘗試不同的閾值方法,比較分割效果。3、(本題5分)利用Python的TensorFlow庫,構(gòu)建一個(gè)深度強(qiáng)化學(xué)習(xí)模型,讓智能體在復(fù)雜環(huán)境中學(xué)習(xí)完成多個(gè)任務(wù),評(píng)估其學(xué)習(xí)效率和策略適應(yīng)性。4、(本題5分)利用Python的Keras庫,構(gòu)建一個(gè)基于深度神經(jīng)網(wǎng)絡(luò)的音頻分類模型,能夠區(qū)分不同類型的音樂、語音等音頻信號(hào)。5、(本題5分)運(yùn)用Python中的PyTorch框架,構(gòu)建一個(gè)基于注意力機(jī)制的知識(shí)圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)生房屋租賃合同范本
- 有限責(zé)任公司投資協(xié)議書范本
- 懷化租賃房屋合同范本
- 繪畫聽評(píng)課記錄怎么寫好
- 人教版九年級(jí)數(shù)學(xué)上冊(cè)第二十四章圓《24.4弧長(zhǎng)和扇形面積》第1課時(shí)聽評(píng)課記錄
- 蘇科版九年級(jí)上冊(cè)物理期末復(fù)習(xí)必考知識(shí)點(diǎn)總結(jié)匯編
- 福建省龍巖市連城縣2022-2023學(xué)年八年級(jí)上學(xué)期期中數(shù)學(xué)試卷(含答案)
- 部編版語文六年級(jí)上冊(cè)期末測(cè)試卷(基礎(chǔ)11)(含答案解析)
- 魯教版歷史六年級(jí)上冊(cè)第2課《原始的農(nóng)耕生活》聽課評(píng)課記錄
- 人教版地理七年級(jí)下冊(cè)《第二節(jié) 自然環(huán)境》聽課評(píng)課記錄3
- 2022版義務(wù)教育(歷史)課程標(biāo)準(zhǔn)(附課標(biāo)解讀)
- 第四單元整體教學(xué)設(shè)計(jì)【大單元教學(xué)】2024-2025學(xué)年八年級(jí)語文上冊(cè)備課系列(統(tǒng)編版)
- 中國(guó)慢性腎臟病早期評(píng)價(jià)與管理指南2023
- 陰囊常見疾病的超聲診斷
- 新人教版五年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題大全及答案
- DZ∕T 0051-2017 地質(zhì)巖心鉆機(jī)型式與規(guī)格系列(正式版)
- 《行業(yè)標(biāo)準(zhǔn)-太陽能光熱發(fā)電技術(shù)監(jiān)督導(dǎo)則》
- 壓力管道穿(跨)越施工工藝規(guī)程2015
- 【家庭教育】0-3歲嬰幼兒早教訓(xùn)練方案
- 國(guó)家中長(zhǎng)期科技發(fā)展規(guī)劃(2021-2035)
- 建筑工人實(shí)名制管理制度及實(shí)施方案
評(píng)論
0/150
提交評(píng)論