重慶安全技術(shù)職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
重慶安全技術(shù)職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
重慶安全技術(shù)職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
重慶安全技術(shù)職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)重慶安全技術(shù)職業(yè)學(xué)院《人工智能基礎(chǔ)與應(yīng)用B》

2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模數(shù)據(jù)集上訓(xùn)練好的圖像分類(lèi)模型應(yīng)用到一個(gè)特定的小數(shù)據(jù)集上,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型在新數(shù)據(jù)集上進(jìn)行微調(diào),快速獲得較好的性能B.由于數(shù)據(jù)集差異較大,原模型無(wú)法在新數(shù)據(jù)集上使用,需要重新訓(xùn)練C.遷移學(xué)習(xí)只能在相同領(lǐng)域的任務(wù)之間進(jìn)行,不同領(lǐng)域無(wú)法應(yīng)用D.遷移學(xué)習(xí)會(huì)導(dǎo)致模型過(guò)擬合新數(shù)據(jù)集,降低泛化能力2、在人工智能的文本分類(lèi)任務(wù)中,除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)方法也取得了很好的效果。以下關(guān)于文本分類(lèi)中深度學(xué)習(xí)方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以自動(dòng)學(xué)習(xí)文本的特征表示B.對(duì)于長(zhǎng)文本的處理能力優(yōu)于短文本C.不需要進(jìn)行特征工程D.訓(xùn)練數(shù)據(jù)量越大,效果一定越好3、人工智能在能源管理領(lǐng)域有潛在應(yīng)用。假設(shè)一個(gè)智能電網(wǎng)要利用人工智能優(yōu)化電力分配,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析用戶用電模式和需求,實(shí)現(xiàn)精準(zhǔn)的電力調(diào)度B.預(yù)測(cè)電力負(fù)荷變化,提前做好發(fā)電和儲(chǔ)能規(guī)劃C.人工智能可以完全自主地管理電網(wǎng),不需要人工干預(yù)和調(diào)控D.考慮可再生能源的波動(dòng)性,優(yōu)化能源組合,提高電網(wǎng)穩(wěn)定性4、在人工智能的模型評(píng)估中,需要使用多種指標(biāo)來(lái)衡量模型的性能。假設(shè)評(píng)估一個(gè)分類(lèi)模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,哪一項(xiàng)是不正確的?()A.準(zhǔn)確率是正確分類(lèi)的樣本數(shù)占總樣本數(shù)的比例,是常用的評(píng)估指標(biāo)之一B.召回率衡量了被正確識(shí)別的正例在實(shí)際正例中的比例C.F1值綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中表現(xiàn)良好,無(wú)需考慮其他指標(biāo)5、人工智能中的語(yǔ)音合成技術(shù)旨在將文本轉(zhuǎn)換為自然流暢的語(yǔ)音。假設(shè)我們要為一款智能語(yǔ)音助手開(kāi)發(fā)語(yǔ)音合成功能,以下關(guān)于語(yǔ)音合成的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)拼接預(yù)先錄制的語(yǔ)音片段來(lái)實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法能夠生成更自然的語(yǔ)音語(yǔ)調(diào)C.語(yǔ)音合成的質(zhì)量只取決于聲學(xué)模型D.韻律和情感的表達(dá)是語(yǔ)音合成中的重要挑戰(zhàn)6、人工智能在醫(yī)療影像診斷中的輔助作用越來(lái)越受到重視。假設(shè)一個(gè)醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無(wú)需再進(jìn)行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗(yàn)C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準(zhǔn)確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價(jià)值的幫助7、人工智能中的情感識(shí)別不僅可以應(yīng)用于人類(lèi)的情感分析,還可以用于動(dòng)物的行為研究。假設(shè)我們要通過(guò)動(dòng)物的行為來(lái)判斷其情感狀態(tài),以下關(guān)于動(dòng)物情感識(shí)別的說(shuō)法,哪一項(xiàng)是正確的?()A.動(dòng)物的情感表達(dá)和人類(lèi)完全相同B.可以直接使用人類(lèi)情感識(shí)別的模型和方法C.需要結(jié)合動(dòng)物的生理特征和行為模式進(jìn)行分析D.動(dòng)物的情感識(shí)別沒(méi)有實(shí)際應(yīng)用價(jià)值8、在自然語(yǔ)言處理中,詞向量表示是基礎(chǔ)技術(shù)之一。假設(shè)要對(duì)大量文本進(jìn)行處理和分析。以下關(guān)于詞向量的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.詞向量可以將單詞轉(zhuǎn)換為數(shù)值向量,便于計(jì)算機(jī)處理和計(jì)算B.常見(jiàn)的詞向量模型有One-Hot編碼、Word2Vec和GloVe等C.詞向量的維度越高,表達(dá)能力越強(qiáng),但計(jì)算和存儲(chǔ)成本也越高D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化9、在人工智能的文本分類(lèi)任務(wù)中,類(lèi)別不平衡是一個(gè)常見(jiàn)的問(wèn)題。假設(shè)一個(gè)數(shù)據(jù)集包含大量屬于某一主要類(lèi)別的樣本,而其他類(lèi)別的樣本數(shù)量較少。以下哪種方法在處理類(lèi)別不平衡問(wèn)題時(shí)最為有效,能夠提高少數(shù)類(lèi)別的分類(lèi)性能?()A.重采樣技術(shù)B.代價(jià)敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運(yùn)用10、生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種新興的人工智能技術(shù)。假設(shè)要使用GAN生成逼真的圖像。以下關(guān)于生成對(duì)抗網(wǎng)絡(luò)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.GAN由生成器和判別器組成,兩者通過(guò)對(duì)抗訓(xùn)練不斷優(yōu)化B.生成器負(fù)責(zé)生成假樣本,判別器負(fù)責(zé)判斷樣本的真假C.GAN可以生成具有高度創(chuàng)造性和多樣性的新數(shù)據(jù)D.GAN的訓(xùn)練過(guò)程非常穩(wěn)定,不會(huì)出現(xiàn)模式崩潰等問(wèn)題11、人工智能中的聚類(lèi)算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對(duì)一組客戶數(shù)據(jù)進(jìn)行聚類(lèi)分析。以下關(guān)于聚類(lèi)算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見(jiàn)的聚類(lèi)算法,需要事先指定簇的數(shù)量B.聚類(lèi)算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場(chǎng)細(xì)分等應(yīng)用C.不同的聚類(lèi)算法在不同的數(shù)據(jù)分布和場(chǎng)景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類(lèi)結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響12、當(dāng)利用人工智能進(jìn)行文本摘要生成,從長(zhǎng)篇文章中提取關(guān)鍵信息并形成簡(jiǎn)潔的摘要,以下哪種策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是13、在人工智能的自然語(yǔ)言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)生成新聞報(bào)道的系統(tǒng),以下關(guān)于自然語(yǔ)言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報(bào)道B.僅僅依靠語(yǔ)言模型的概率預(yù)測(cè),不考慮語(yǔ)義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語(yǔ)義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報(bào)道D.自然語(yǔ)言生成系統(tǒng)不需要考慮語(yǔ)言的風(fēng)格和體裁,能夠生成通用的文本14、在人工智能的自然語(yǔ)言生成任務(wù)中,假設(shè)要生成一篇結(jié)構(gòu)清晰、邏輯連貫的文章。以下哪種方法能夠有助于提高生成文章的質(zhì)量?()A.引入先驗(yàn)知識(shí)和約束,指導(dǎo)生成過(guò)程B.完全依靠模型的隨機(jī)輸出,不進(jìn)行任何引導(dǎo)C.減少生成的文本長(zhǎng)度,降低復(fù)雜性D.不考慮語(yǔ)法和邏輯,只關(guān)注內(nèi)容的豐富性15、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開(kāi)發(fā)一個(gè)系統(tǒng)來(lái)監(jiān)測(cè)農(nóng)田中的病蟲(chóng)害情況,需要能夠準(zhǔn)確識(shí)別病蟲(chóng)害的類(lèi)型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹(shù)算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法16、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)崟r(shí)優(yōu)化交通信號(hào)燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項(xiàng)是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車(chē)流量,不考慮周邊道路的情況B.綜合考慮不同時(shí)間段、天氣條件和特殊事件等對(duì)交通的影響C.按照固定的模式設(shè)置交通信號(hào)燈,不進(jìn)行實(shí)時(shí)調(diào)整D.忽略行人的需求,只關(guān)注車(chē)輛的通行17、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識(shí)和模型來(lái)解決新的問(wèn)題。假設(shè)我們已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類(lèi)任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說(shuō)法,哪一項(xiàng)是正確的?()A.可以直接使用原模型的參數(shù),無(wú)需任何調(diào)整B.只需要對(duì)模型的最后幾層進(jìn)行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同18、人工智能在氣象預(yù)測(cè)中的應(yīng)用可以提高預(yù)測(cè)的準(zhǔn)確性和精細(xì)化程度。假設(shè)要開(kāi)發(fā)一個(gè)能夠預(yù)測(cè)局部地區(qū)短期天氣變化的人工智能模型,需要考慮多種氣象因素的相互作用。以下哪種模型架構(gòu)和訓(xùn)練方法在處理這種復(fù)雜的時(shí)空數(shù)據(jù)方面表現(xiàn)更為出色?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)B.長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)C.門(mén)控循環(huán)單元(GRU)D.以上模型結(jié)合使用19、在人工智能的圖像語(yǔ)義分割任務(wù)中,需要將圖像中的每個(gè)像素分配到不同的類(lèi)別,例如將一幅街景圖像中的道路、建筑物、車(chē)輛等區(qū)分開(kāi)來(lái)。假設(shè)圖像中的物體邊界模糊、類(lèi)別多樣,以下哪種方法能夠提高語(yǔ)義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的分割算法,降低計(jì)算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對(duì)原始圖像進(jìn)行分割20、在人工智能的發(fā)展中,算力是重要的支撐因素。假設(shè)要訓(xùn)練一個(gè)大型的人工智能模型,以下關(guān)于算力的描述,哪一項(xiàng)是不正確的?()A.強(qiáng)大的計(jì)算資源,如GPU集群,可以加速模型的訓(xùn)練過(guò)程B.云計(jì)算平臺(tái)可以提供靈活的算力支持,滿足不同規(guī)模的訓(xùn)練需求C.算力的提升僅僅取決于硬件的性能,與算法的優(yōu)化無(wú)關(guān)D.合理分配和利用算力資源對(duì)于提高訓(xùn)練效率和降低成本至關(guān)重要二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋半監(jiān)督學(xué)習(xí)的特點(diǎn)和應(yīng)用。2、(本題5分)談?wù)勅斯ぶ悄茉跊Q策支持系統(tǒng)中的角色。3、(本題5分)簡(jiǎn)述循環(huán)神經(jīng)網(wǎng)絡(luò)在處理序列數(shù)據(jù)中的應(yīng)用。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)剖析某智能民間音樂(lè)創(chuàng)作輔助系統(tǒng)中人工智能的旋律生成和編曲建議功能。2、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能藝術(shù)展覽策劃系統(tǒng),探討其如何根據(jù)展品和觀眾需求策劃展覽。3、(本題5分)分析一個(gè)利用人工智能進(jìn)行智能藝術(shù)作品價(jià)值評(píng)估系統(tǒng),探討其如何評(píng)估藝術(shù)作品的經(jīng)濟(jì)和文化價(jià)值。4、(本題5分)分析一個(gè)基于

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論