滄州二中高三數(shù)學(xué)試卷_第1頁(yè)
滄州二中高三數(shù)學(xué)試卷_第2頁(yè)
滄州二中高三數(shù)學(xué)試卷_第3頁(yè)
滄州二中高三數(shù)學(xué)試卷_第4頁(yè)
滄州二中高三數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

滄州二中高三數(shù)學(xué)試卷一、選擇題

1.在下列各對(duì)函數(shù)中,若函數(shù)\(f(x)\)的圖像是函數(shù)\(g(x)\)的圖像關(guān)于\(y\)軸的對(duì)稱圖形,則\(f(x)\)和\(g(x)\)的關(guān)系是()

A.\(f(x)=g(-x)\)B.\(f(x)=g(x)\)C.\(f(x)=-g(x)\)D.\(f(x)=-g(-x)\)

2.若函數(shù)\(f(x)\)在\((0,+\infty)\)上單調(diào)遞增,且\(f(1)=2\),則下列各式中,正確的是()

A.\(f(2)>f(1)\)B.\(f(0)<f(1)\)C.\(f(1)>f(2)\)D.\(f(2)<f(0)\)

3.若函數(shù)\(f(x)=ax^2+bx+c\)的圖像開口向上,且\(f(0)=1\),\(f(1)=4\),\(f(2)=9\),則下列各式中,正確的是()

A.\(a>0\)B.\(b>0\)C.\(c>0\)D.\(a+b+c>0\)

4.已知函數(shù)\(f(x)=x^3-3x\),則\(f(x)\)的對(duì)稱中心為()

A.\((0,0)\)B.\((1,0)\)C.\((0,1)\)D.\((1,1)\)

5.若函數(shù)\(f(x)=\sqrt{x^2+1}\)的圖像上任意一點(diǎn)\((x,y)\)到原點(diǎn)的距離為\(d\),則\(d\)的最小值為()

A.\(\sqrt{2}\)B.\(1\)C.\(0\)D.無解

6.已知函數(shù)\(f(x)=x^2-2x+1\),若\(f(x)\)的圖像上任意一點(diǎn)\((x,y)\)到直線\(y=1\)的距離為\(d\),則\(d\)的最大值為()

A.\(2\)B.\(1\)C.\(0\)D.無解

7.若函數(shù)\(f(x)=a^x\)的圖像過點(diǎn)\((1,2)\),則\(a\)的值為()

A.\(2\)B.\(1\)C.\(\frac{1}{2}\)D.\(-1\)

8.若函數(shù)\(f(x)=\frac{1}{x}\)的圖像上任意一點(diǎn)\((x,y)\)到原點(diǎn)的距離為\(d\),則\(d\)的最大值為()

A.\(\sqrt{2}\)B.\(1\)C.\(0\)D.無解

9.已知函數(shù)\(f(x)=x^3-3x\),則\(f(x)\)的圖像上任意一點(diǎn)\((x,y)\)到直線\(y=0\)的距離為()

A.\(|x|\)B.\(|x^2|\)C.\(|x^3|\)D.\(|x^2-3x|\)

10.若函數(shù)\(f(x)=\frac{1}{x}\)的圖像上任意一點(diǎn)\((x,y)\)到直線\(y=1\)的距離為\(d\),則\(d\)的最小值為()

A.\(\sqrt{2}\)B.\(1\)C.\(0\)D.無解

二、判斷題

1.函數(shù)\(f(x)=ax^2+bx+c\)的圖像是一個(gè)拋物線,其中\(zhòng)(a\)、\(b\)、\(c\)是常數(shù),且\(a\neq0\)。()

2.如果函數(shù)\(f(x)\)在區(qū)間\([a,b]\)上連續(xù),且\(f(a)>f(b)\),那么\(f(x)\)在\([a,b]\)上必定存在一個(gè)零點(diǎn)。()

3.對(duì)于任意二次方程\(ax^2+bx+c=0\),其判別式\(b^2-4ac\)大于零時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。()

4.在直角坐標(biāo)系中,一個(gè)圓的方程可以表示為\(x^2+y^2=r^2\),其中\(zhòng)(r\)是圓的半徑。()

5.如果函數(shù)\(f(x)\)在點(diǎn)\(x=a\)處可導(dǎo),那么函數(shù)\(f(x)\)在點(diǎn)\(x=a\)處必定連續(xù)。()

三、填空題

1.若函數(shù)\(f(x)=\sqrt{x^2-4}\)的定義域?yàn)閈(D\),則\(D=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡(jiǎn)答題

1.簡(jiǎn)述函數(shù)\(f(x)=x^3-3x\)的導(dǎo)數(shù)\(f'(x)\)的求法,并求出\(f'(x)\)。

2.已知函數(shù)\(f(x)=\frac{x^2-1}{x-1}\),求\(f(x)\)的極限\(\lim_{x\to1}f(x)\)。

3.給定直線\(y=mx+b\)和圓\(x^2+y^2=r^2\),證明:直線和圓相交的必要條件是\(m^2+1\geq\frac{1}{r^2}\)。

4.簡(jiǎn)述二次函數(shù)\(f(x)=ax^2+bx+c\)的圖像與\(x\)軸交點(diǎn)的個(gè)數(shù)與判別式\(b^2-4ac\)之間的關(guān)系。

5.設(shè)函數(shù)\(f(x)=\ln(x)\),證明:對(duì)于任意\(x_1>x_2>0\),有\(zhòng)(f(x_1)-f(x_2)>\frac{x_1-x_2}{x_1x_2}\)。

五、計(jì)算題

1.計(jì)算定積分\(\int_{0}^{2}(x^2-4x+3)\,dx\)的值。

2.求函數(shù)\(f(x)=e^x-x\)在\(x=0\)處的導(dǎo)數(shù)\(f'(0)\)。

3.解方程組\(\begin{cases}2x+3y=8\\x-y=1\end{cases}\)。

4.計(jì)算復(fù)數(shù)\((1+2i)^5\)的值。

5.求函數(shù)\(f(x)=\frac{1}{x^2-4}\)在區(qū)間\([1,3]\)上的定積分\(\int_{1}^{3}f(x)\,dx\)。

六、案例分析題

1.案例背景:某公司計(jì)劃生產(chǎn)一批產(chǎn)品,已知生產(chǎn)第\(x\)件產(chǎn)品的成本為\(C(x)=100+2x\)元,其中\(zhòng)(x\)為產(chǎn)品的件數(shù)。又知每件產(chǎn)品的售價(jià)為200元,市場(chǎng)需求函數(shù)為\(Q(x)=500-2x\),其中\(zhòng)(x\)為市場(chǎng)需求量。

案例分析:

(1)求生產(chǎn)\(x\)件產(chǎn)品的利潤(rùn)函數(shù)\(L(x)\)。

(2)求使得利潤(rùn)最大化的最優(yōu)生產(chǎn)件數(shù)\(x\)。

(3)根據(jù)市場(chǎng)需求函數(shù),當(dāng)\(x=100\)時(shí),市場(chǎng)對(duì)這批產(chǎn)品的需求量是多少?

2.案例背景:某班級(jí)有30名學(xué)生,其中男生人數(shù)為\(x\),女生人數(shù)為\(y\)。已知男生平均身高為\(h_1\),女生平均身高為\(h_2\),班級(jí)總平均身高為\(h\)。

案例分析:

(1)根據(jù)班級(jí)總平均身高的定義,寫出\(h\)的表達(dá)式。

(2)若已知\(h_1=1.75\)米,\(h_2=1.65\)米,\(h=1.70\)米,求班級(jí)中男生和女生的人數(shù)\(x\)和\(y\)。

(3)如果班級(jí)中男女生人數(shù)的比例是\(1:1\),求班級(jí)的總平均身高\(yùn)(h\)。

七、應(yīng)用題

1.應(yīng)用題:某工廠生產(chǎn)一種產(chǎn)品,其固定成本為每天2000元,每生產(chǎn)一件產(chǎn)品的變動(dòng)成本為10元。如果每件產(chǎn)品的售價(jià)為50元,求工廠每天生產(chǎn)多少件產(chǎn)品才能達(dá)到盈虧平衡點(diǎn)?

2.應(yīng)用題:已知某函數(shù)\(f(x)=-2x^2+8x+4\),求函數(shù)\(f(x)\)在區(qū)間\([1,4]\)上的最大值和最小值。

3.應(yīng)用題:一元二次方程\(ax^2+bx+c=0\)的兩個(gè)實(shí)數(shù)根為\(x_1\)和\(x_2\),且\(x_1+x_2=-\frac{a}\),\(x_1x_2=\frac{c}{a}\)。若方程的判別式\(b^2-4ac\)等于0,求方程的解。

4.應(yīng)用題:一輛汽車以60公里/小時(shí)的速度行駛,經(jīng)過一段時(shí)間后,速度降低到40公里/小時(shí),行駛了相同的時(shí)間。假設(shè)汽車減速的過程是勻減速運(yùn)動(dòng),求汽車減速的平均速度。

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題

1.A

2.A

3.A

4.A

5.A

6.A

7.A

8.A

9.A

10.A

二、判斷題

1.×

2.×

3.√

4.√

5.√

三、填空題

1.\(\sqrt{x^2-4}>0\)

2.\(\lim_{x\to1}f(x)=2\)

3.\(m^2+1\geq\frac{1}{r^2}\)

4.當(dāng)\(b^2-4ac>0\)時(shí),有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)\(b^2-4ac=0\)時(shí),有兩個(gè)相等的實(shí)數(shù)根;當(dāng)\(b^2-4ac<0\)時(shí),沒有實(shí)數(shù)根。

5.\(f(x_1)-f(x_2)>\frac{x_1-x_2}{x_1x_2}\)

四、簡(jiǎn)答題

1.\(f'(x)=3x^2-3\)。

2.\(f'(0)=1\)。

3.證明:直線和圓相交,意味著直線方程和圓的方程有公共解。將直線方程代入圓的方程,得到關(guān)于\(x\)的一元二次方程。根據(jù)判別式\(b^2-4ac\)的值,判斷方程的解的情況,從而得出結(jié)論。

4.當(dāng)\(b^2-4ac>0\)時(shí),有兩個(gè)不相等的實(shí)數(shù)根,說明圖像與\(x\)軸有兩個(gè)交點(diǎn);當(dāng)\(b^2-4ac=0\)時(shí),有一個(gè)重根,說明圖像與\(x\)軸有一個(gè)切點(diǎn);當(dāng)\(b^2-4ac<0\)時(shí),沒有實(shí)數(shù)根,說明圖像與\(x\)軸沒有交點(diǎn)。

5.根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),\(f(x_1)-f(x_2)=\ln(x_1)-\ln(x_2)=\ln\left(\frac{x_1}{x_2}\right)\)。由于\(x_1>x_2>0\),所以\(\frac{x_1}{x_2}>1\),根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性,有\(zhòng)(\ln\left(\frac{x_1}{x_2}\right)>0\)。同時(shí),根據(jù)對(duì)數(shù)函數(shù)的拉格朗日中值定理,存在某個(gè)\(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論