![2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題04導(dǎo)數(shù)及其應(yīng)用(解答題)-專(zhuān)項(xiàng)訓(xùn)練【含答案】_第1頁(yè)](http://file4.renrendoc.com/view10/M02/08/2C/wKhkGWeuyGuAOUvxAAGTA2WmE88877.jpg)
![2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題04導(dǎo)數(shù)及其應(yīng)用(解答題)-專(zhuān)項(xiàng)訓(xùn)練【含答案】_第2頁(yè)](http://file4.renrendoc.com/view10/M02/08/2C/wKhkGWeuyGuAOUvxAAGTA2WmE888772.jpg)
![2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題04導(dǎo)數(shù)及其應(yīng)用(解答題)-專(zhuān)項(xiàng)訓(xùn)練【含答案】_第3頁(yè)](http://file4.renrendoc.com/view10/M02/08/2C/wKhkGWeuyGuAOUvxAAGTA2WmE888773.jpg)
![2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題04導(dǎo)數(shù)及其應(yīng)用(解答題)-專(zhuān)項(xiàng)訓(xùn)練【含答案】_第4頁(yè)](http://file4.renrendoc.com/view10/M02/08/2C/wKhkGWeuyGuAOUvxAAGTA2WmE888774.jpg)
![2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題04導(dǎo)數(shù)及其應(yīng)用(解答題)-專(zhuān)項(xiàng)訓(xùn)練【含答案】_第5頁(yè)](http://file4.renrendoc.com/view10/M02/08/2C/wKhkGWeuyGuAOUvxAAGTA2WmE888775.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025高考數(shù)學(xué)二輪復(fù)習(xí)-專(zhuān)題04導(dǎo)數(shù)及其應(yīng)用(解答題)-專(zhuān)項(xiàng)訓(xùn)練考點(diǎn)五年考情(2020-2024)命題趨勢(shì)考點(diǎn)1利用導(dǎo)數(shù)求函數(shù)單調(diào)性,求參數(shù)2024全國(guó)甲卷Ⅰ卷2023Ⅱ卷乙甲2022甲卷Ⅰ卷Ⅱ卷乙卷2021甲卷Ⅰ卷2020Ⅰ卷Ⅲ卷含參的函數(shù)利用導(dǎo)數(shù)求參數(shù)問(wèn)題是高考中的一個(gè)高頻考點(diǎn),也是必考點(diǎn),通過(guò)函數(shù)單調(diào)性轉(zhuǎn)化成為恒成立問(wèn)題或者存在使成立問(wèn)題以及其他問(wèn)題,可直接求導(dǎo)或者是利用分離參數(shù)去轉(zhuǎn)化??键c(diǎn)2恒成立問(wèn)題2023甲卷2022甲卷Ⅰ卷Ⅱ卷2021乙卷Ⅱ卷2020ⅠⅡⅢ卷考點(diǎn)3與三角函數(shù)相關(guān)導(dǎo)數(shù)問(wèn)題2023Ⅱ卷甲卷2022天津卷2021Ⅰ卷2020Ⅱ卷甲卷與三角函數(shù)相關(guān)問(wèn)題隨著新高考新結(jié)構(gòu)的出現(xiàn),這類(lèi)題目一壓軸題出現(xiàn)的頻率會(huì)變大??键c(diǎn)04導(dǎo)數(shù)綜合類(lèi)問(wèn)題2024北京天津2023乙卷北京Ⅰ卷天津2022甲卷ⅠⅡ卷2021乙卷Ⅰ卷2020ⅡⅢ卷導(dǎo)數(shù)綜合類(lèi)問(wèn)題一直是高考數(shù)學(xué)的壓軸題一般牽扯到不等式的證明問(wèn)題,極值點(diǎn)偏移問(wèn)題,拐點(diǎn)偏移問(wèn)題,隱零點(diǎn)問(wèn)題,函數(shù)放縮問(wèn)題。未來(lái)也是高考重難點(diǎn)考點(diǎn)05新定義問(wèn)題2024上海卷隨著高考數(shù)學(xué)新結(jié)構(gòu)的形式出現(xiàn)。導(dǎo)數(shù)新定義問(wèn)題將成為高頻考點(diǎn)考點(diǎn)01利用導(dǎo)數(shù)求函數(shù)單調(diào)性,求參數(shù)解答題1.(2024·全國(guó)·高考Ⅰ卷)已知函數(shù)(1)若,且,求的最小值;(2)證明:曲線是中心對(duì)稱(chēng)圖形;(3)若當(dāng)且僅當(dāng),求的取值范圍.2.(2024·全國(guó)·高考Ⅱ卷)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.3.(2024·全國(guó)·高考甲卷理)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求的取值范圍.4.(2023·年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.5.(2023年全國(guó)高考乙卷數(shù)學(xué)(文)試題)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.(2)若函數(shù)在單調(diào)遞增,求的取值范圍.6.(2022年全國(guó)高考乙卷數(shù)學(xué)(文)試題)已知函數(shù).(1)當(dāng)時(shí),求的最大值;(2)若恰有一個(gè)零點(diǎn),求a的取值范圍.7.(2022年全國(guó)高考甲卷數(shù)學(xué)(文)試題)已知函數(shù),曲線在點(diǎn)處的切線也是曲線的切線.(1)若,求a;(2)求a的取值范圍.8.(2021年全國(guó)高考甲卷數(shù)學(xué)(文)試題)設(shè)函數(shù),其中.(1)討論的單調(diào)性;(2)若的圖象與軸沒(méi)有公共點(diǎn),求a的取值范圍.9.(2020年全國(guó)高考Ⅰ卷(文)數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)若有兩個(gè)零點(diǎn),求的取值范圍.10.(2020年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若不等式恒成立,求a的取值范圍.11.(2023·全國(guó)乙卷)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)是否存在a,b,使得曲線關(guān)于直線對(duì)稱(chēng),若存在,求a,b的值,若不存在,說(shuō)明理由.(3)若在存在極值,求a的取值范圍.12.(2022·全國(guó)乙卷)已知函數(shù)(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間各恰有一個(gè)零點(diǎn),求a的取值范圍.13.(2021·全國(guó)甲卷)已知且,函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若曲線與直線有且僅有兩個(gè)交點(diǎn),求a的取值范圍.14.(2021·天津·統(tǒng)考高考真題)已知,函數(shù).(I)求曲線在點(diǎn)處的切線方程:(II)證明存在唯一的極值點(diǎn)(III)若存在a,使得對(duì)任意成立,求實(shí)數(shù)b的取值范圍.15.(2020年全國(guó)高考Ⅰ卷)已知函數(shù).(1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性;(2)當(dāng)x≥0時(shí),f(x)≥x3+1,求a的取值范圍.考點(diǎn)02恒成立問(wèn)題解答題1.(2024·全國(guó)·高考甲卷文)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:當(dāng)時(shí),恒成立.2.(2023全國(guó)新高考Ⅰ卷)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.3.(2022·北京·統(tǒng)考高考真題)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)設(shè),討論函數(shù)在上的單調(diào)性;(3)證明:對(duì)任意的,有.4.(2021·全國(guó)乙卷)設(shè)函數(shù),已知是函數(shù)的極值點(diǎn).(1)求a;(2)設(shè)函數(shù).證明:.5.(2021·北京·統(tǒng)考高考真題)已知函數(shù).(1)若,求曲線在點(diǎn)處的切線方程;(2)若在處取得極值,求的單調(diào)區(qū)間,以及其最大值與最小值.6.(2021·天津·統(tǒng)考高考真題)已知,函數(shù).(I)求曲線在點(diǎn)處的切線方程:(II)證明存在唯一的極值點(diǎn)(III)若存在a,使得對(duì)任意成立,求實(shí)數(shù)b的取值范圍.7.(2020年全國(guó)新高考Ⅰ卷)設(shè)函數(shù),曲線在點(diǎn)(,f())處的切線與y軸垂直.(1)求b.(2)若有一個(gè)絕對(duì)值不大于1的零點(diǎn),證明:所有零點(diǎn)的絕對(duì)值都不大于1.(2023年全國(guó)新高考Ⅱ卷(文))(1)證明:當(dāng)時(shí),;(2)已知函數(shù),若是的極大值點(diǎn),求a的取值范圍.9.(2020年全國(guó)高考Ⅱ卷(文)數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若不等式恒成立,求a的取值范圍.考點(diǎn)03三角函數(shù)相關(guān)導(dǎo)數(shù)問(wèn)題一、解答題1.(2023年全國(guó)高考Ⅱ卷)(1)證明:當(dāng)時(shí),;(2)已知函數(shù),若是的極大值點(diǎn),求a的取值范圍.2.(2023·全國(guó)甲卷)已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)若恒成立,求a的取值范圍.3.(2022·天津·統(tǒng)考高考真題)已知,函數(shù)(1)求函數(shù)在處的切線方程;(2)若和有公共點(diǎn),(i)當(dāng)時(shí),求的取值范圍;(ii)求證:.4.(2020年全國(guó)高考Ⅱ卷)已知函數(shù)f(x)=sin2xsin2x.(1)討論f(x)在區(qū)間(0,π)的單調(diào)性;(2)證明:;(3)設(shè)n∈N*,證明:sin2xsin22xsin24x…sin22nx≤.5.(2021年全國(guó)高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.考點(diǎn)04導(dǎo)數(shù)類(lèi)綜合問(wèn)題1(2024·北京·高考真題)設(shè)函數(shù),直線是曲線在點(diǎn)處的切線.(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)求證:不經(jīng)過(guò)點(diǎn).(3)當(dāng)時(shí),設(shè)點(diǎn),,,為與軸的交點(diǎn),與分別表示與的面積.是否存在點(diǎn)使得成立?若存在,這樣的點(diǎn)有幾個(gè)?(參考數(shù)據(jù):,,)2.(2024·天津·高考真題)設(shè)函數(shù).(1)求圖象上點(diǎn)處的切線方程;(2)若在時(shí)恒成立,求的值;(3)若,證明.3.(2023·全國(guó)乙卷)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)是否存在a,b,使得曲線關(guān)于直線對(duì)稱(chēng),若存在,求a,b的值,若不存在,說(shuō)明理由.(3)若在存在極值,求a的取值范圍.4.(2022·全國(guó)甲卷)已知函數(shù).(1)若,求a的取值范圍;(2)證明:若有兩個(gè)零點(diǎn),則.5.(2022年全國(guó)新高考Ⅰ卷)已知函數(shù)和有相同的最小值.(1)求a;(2)證明:存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),并且從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.6.(2022年全國(guó)高考Ⅱ卷)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),,求a的取值范圍;(3)設(shè),證明:.7.(2021·全國(guó)乙卷)設(shè)函數(shù),已知是函數(shù)的極值點(diǎn).(1)求a;(2)設(shè)函數(shù).證明:.8.(2022年全國(guó)新高考Ⅰ卷)已知函數(shù).(1)討論的單調(diào)性;(2)設(shè),為兩個(gè)不相等的正數(shù),且,證明:.9.(2022年全國(guó)新高考Ⅱ卷)已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個(gè)條件中選一個(gè),證明:只有一個(gè)零點(diǎn)①;②.10.(2020年全國(guó)高考Ⅲ卷)設(shè)函數(shù),曲線在點(diǎn)(,f())處的切線與y軸垂直.(1)求b.(2)若有一個(gè)絕對(duì)值不大于1的零點(diǎn),證明:所有零點(diǎn)的絕對(duì)值都不大于1.11.(2023·北京·統(tǒng)考高考真題)設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.(1)求的值;(2)設(shè)函數(shù),求的單調(diào)區(qū)間;(3)求的極值點(diǎn)個(gè)數(shù).12.(2023·天津·統(tǒng)考高考真題)已知函數(shù).(1)求曲線在處切線的斜率;(2)當(dāng)時(shí),證明:;(3)證明:.13.(2021·全國(guó)乙卷)已知函數(shù).(1)討論的單調(diào)性;(2)求曲線過(guò)坐標(biāo)原點(diǎn)的切線與曲線的公共點(diǎn)的坐標(biāo).14.(2021年全國(guó)高考Ⅱ卷(文))已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個(gè)條件中選一個(gè),證明:只有一個(gè)零點(diǎn)①;②.15.(2020·全國(guó)高考Ⅱ卷)已知函數(shù)f(x)=2lnx+1.(1)若f(x)≤2x+c,求c的取值范圍;(2)設(shè)a>0時(shí),討論函數(shù)g(x)=的單調(diào)性.16.(2020·全國(guó)高考Ⅲ卷(文))已知函數(shù).(1)討論的單調(diào)性;(2)若有三個(gè)零點(diǎn),求的取值范圍.17(2021·年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)設(shè),為兩個(gè)不相等的正數(shù),且,證明:.考點(diǎn)05函數(shù)導(dǎo)數(shù)新定義1(2024·上?!じ呖颊骖})對(duì)于一個(gè)函數(shù)和一個(gè)點(diǎn),令,若是取到最小值的點(diǎn),則稱(chēng)是在的“最近點(diǎn)”.(1)對(duì)于,求證:對(duì)于點(diǎn),存在點(diǎn),使得點(diǎn)是在的“最近點(diǎn)”;(2)對(duì)于,請(qǐng)判斷是否存在一個(gè)點(diǎn),它是在的“最近點(diǎn)”,且直線與在點(diǎn)處的切線垂直;(3)已知在定義域R上存在導(dǎo)函數(shù),且函數(shù)在定義域R上恒正,設(shè)點(diǎn),.若對(duì)任意的,存在點(diǎn)同時(shí)是在的“最近點(diǎn)”,試判斷的單調(diào)性參考答案與詳細(xì)解析考點(diǎn)五年考情(2020-2024)命題趨勢(shì)考點(diǎn)1利用導(dǎo)數(shù)求函數(shù)單調(diào)性,求參數(shù)2024全國(guó)甲卷Ⅰ卷2023Ⅱ卷乙甲2022甲卷Ⅰ卷Ⅱ卷乙卷2021甲卷Ⅰ卷2020Ⅰ卷Ⅲ卷含參的函數(shù)利用導(dǎo)數(shù)求參數(shù)問(wèn)題是高考中的一個(gè)高頻考點(diǎn),也是必考點(diǎn),通過(guò)函數(shù)單調(diào)性轉(zhuǎn)化成為恒成立問(wèn)題或者存在使成立問(wèn)題以及其他問(wèn)題,可直接求導(dǎo)或者是利用分離參數(shù)去轉(zhuǎn)化??键c(diǎn)2恒成立問(wèn)題2023甲卷2022甲卷Ⅰ卷Ⅱ卷2021乙卷Ⅱ卷2020ⅠⅡⅢ卷考點(diǎn)3與三角函數(shù)相關(guān)導(dǎo)數(shù)問(wèn)題2023Ⅱ卷甲卷2022天津卷2021Ⅰ卷2020Ⅱ卷甲卷與三角函數(shù)相關(guān)問(wèn)題隨著新高考新結(jié)構(gòu)的出現(xiàn),這類(lèi)題目一壓軸題出現(xiàn)的頻率會(huì)變大??键c(diǎn)04導(dǎo)數(shù)綜合類(lèi)問(wèn)題2024北京天津2023乙卷北京Ⅰ卷天津2022甲卷ⅠⅡ卷2021乙卷Ⅰ卷2020ⅡⅢ卷導(dǎo)數(shù)綜合類(lèi)問(wèn)題一直是高考數(shù)學(xué)的壓軸題一般牽扯到不等式的證明問(wèn)題,極值點(diǎn)偏移問(wèn)題,拐點(diǎn)偏移問(wèn)題,隱零點(diǎn)問(wèn)題,函數(shù)放縮問(wèn)題。未來(lái)也是高考重難點(diǎn)考點(diǎn)05新定義問(wèn)題2024上海卷隨著高考數(shù)學(xué)新結(jié)構(gòu)的形式出現(xiàn)。導(dǎo)數(shù)新定義問(wèn)題將成為高頻考點(diǎn)考點(diǎn)01利用導(dǎo)數(shù)求函數(shù)單調(diào)性,求參數(shù)解答題1.(2024·全國(guó)·高考Ⅰ卷)已知函數(shù)(1)若,且,求的最小值;(2)證明:曲線是中心對(duì)稱(chēng)圖形;(3)若當(dāng)且僅當(dāng),求的取值范圍.【答案】(1)(2)證明見(jiàn)解析(3)【詳解】(1)時(shí),,其中,則,因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,故,而成立,故即,所以的最小值為.,(2)的定義域?yàn)椋O(shè)為圖象上任意一點(diǎn),關(guān)于的對(duì)稱(chēng)點(diǎn)為,因?yàn)樵趫D象上,故,而,,所以也在圖象上,由的任意性可得圖象為中心對(duì)稱(chēng)圖形,且對(duì)稱(chēng)中心為.(3)因?yàn)楫?dāng)且僅當(dāng),故為的一個(gè)解,所以即,先考慮時(shí),恒成立.此時(shí)即為在上恒成立,設(shè),則在上恒成立,設(shè),則,當(dāng),,故恒成立,故在上為增函數(shù),故即在上恒成立.當(dāng)時(shí),,故恒成立,故在上為增函數(shù),故即在上恒成立.當(dāng),則當(dāng)時(shí),故在上為減函數(shù),故,不合題意,舍;綜上,在上恒成立時(shí).而當(dāng)時(shí),而時(shí),由上述過(guò)程可得在遞增,故的解為,即的解為.綜上,.2.(2024·全國(guó)·高考Ⅱ卷)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若有極小值,且極小值小于0,求a的取值范圍.【答案】(1)(2)【詳解】(1)當(dāng)時(shí),則,,可得,,即切點(diǎn)坐標(biāo)為,切線斜率,所以切線方程為,即.(2)解法一:因?yàn)榈亩x域?yàn)?,且,若,則對(duì)任意恒成立,可知在上單調(diào)遞增,無(wú)極值,不合題意;若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無(wú)極大值,由題意可得:,即,構(gòu)建,則,可知在內(nèi)單調(diào)遞增,且,不等式等價(jià)于,解得,所以a的取值范圍為;解法二:因?yàn)榈亩x域?yàn)?,且,若有極小值,則有零點(diǎn),令,可得,可知與有交點(diǎn),則,若,令,解得;令,解得;可知在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,則有極小值,無(wú)極大值,符合題意,由題意可得:,即,構(gòu)建,因?yàn)閯t在內(nèi)單調(diào)遞增,可知在內(nèi)單調(diào)遞增,且,不等式等價(jià)于,解得,所以a的取值范圍為.3.(2024·全國(guó)·高考甲卷理)已知函數(shù).(1)當(dāng)時(shí),求的極值;(2)當(dāng)時(shí),,求的取值范圍.【答案】(1)極小值為,無(wú)極大值.(2)【詳解】(1)當(dāng)時(shí),,故,因?yàn)樵谏蠟樵龊瘮?shù),故在上為增函數(shù),而,故當(dāng)時(shí),,當(dāng)時(shí),,故在處取極小值且極小值為,無(wú)極大值.(2),設(shè),則,當(dāng)時(shí),,故在上為增函數(shù),故,即,所以在上為增函數(shù),故.當(dāng)時(shí),當(dāng)時(shí),,故在上為減函數(shù),故在上,即在上即為減函數(shù),故在上,不合題意,舍.當(dāng),此時(shí)在上恒成立,同理可得在上恒成立,不合題意,舍;綜上,.4.(2023·年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.【答案】(1)答案見(jiàn)解析(2)證明見(jiàn)解析(2)方法一:結(jié)合(1)中結(jié)論,將問(wèn)題轉(zhuǎn)化為的恒成立問(wèn)題,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得即可.方法二:構(gòu)造函數(shù),證得,從而得到,進(jìn)而將問(wèn)題轉(zhuǎn)化為的恒成立問(wèn)題,由此得證.【詳解】(1)因?yàn)?,定義域?yàn)?,所以,?dāng)時(shí),由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時(shí),令,解得,當(dāng)時(shí),,則在上單調(diào)遞減;當(dāng)時(shí),,則在上單調(diào)遞增;綜上:當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因?yàn)?,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.5.(2023年全國(guó)高考乙卷數(shù)學(xué)(文)試題)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.(2)若函數(shù)在單調(diào)遞增,求的取值范圍.【答案】(1);(2).【詳解】(1)當(dāng)時(shí),,則,據(jù)此可得,所以函數(shù)在處的切線方程為,即.(2)由函數(shù)的解析式可得,滿足題意時(shí)在區(qū)間上恒成立.令,則,令,原問(wèn)題等價(jià)于在區(qū)間上恒成立,則,當(dāng)時(shí),由于,故,在區(qū)間上單調(diào)遞減,此時(shí),不合題意;令,則,當(dāng),時(shí),由于,所以在區(qū)間上單調(diào)遞增,即在區(qū)間上單調(diào)遞增,所以,在區(qū)間上單調(diào)遞增,,滿足題意.當(dāng)時(shí),由可得,當(dāng)時(shí),在區(qū)間上單調(diào)遞減,即單調(diào)遞減,注意到,故當(dāng)時(shí),,單調(diào)遞減,由于,故當(dāng)時(shí),,不合題意.綜上可知:實(shí)數(shù)得取值范圍是.6.(2022年全國(guó)高考乙卷數(shù)學(xué)(文)試題)已知函數(shù).(1)當(dāng)時(shí),求的最大值;(2)若恰有一個(gè)零點(diǎn),求a的取值范圍.【答案】(1)(2)【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以;(2),則,當(dāng)時(shí),,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,此時(shí)函數(shù)無(wú)零點(diǎn),不合題意;當(dāng)時(shí),,在上,,單調(diào)遞增;在上,,單調(diào)遞減;又,由(1)得,即,所以,當(dāng)時(shí),,則存在,使得,所以僅在有唯一零點(diǎn),符合題意;當(dāng)時(shí),,所以單調(diào)遞增,又,所以有唯一零點(diǎn),符合題意;當(dāng)時(shí),,在上,,單調(diào)遞增;在上,,單調(diào)遞減;此時(shí),由(1)得當(dāng)時(shí),,,所以,此時(shí)存在,使得,所以在有一個(gè)零點(diǎn),在無(wú)零點(diǎn),所以有唯一零點(diǎn),符合題意;綜上,a的取值范圍為.7.(2022年全國(guó)高考甲卷數(shù)學(xué)(文)試題)已知函數(shù),曲線在點(diǎn)處的切線也是曲線的切線.(1)若,求a;(2)求a的取值范圍.【答案】(1)3(2)【詳解】(1)由題意知,,,,則在點(diǎn)處的切線方程為,即,設(shè)該切線與切于點(diǎn),,則,解得,則,解得;(2),則在點(diǎn)處的切線方程為,整理得,設(shè)該切線與切于點(diǎn),,則,則切線方程為,整理得,則,整理得,令,則,令,解得或,令,解得或,則變化時(shí),的變化情況如下表:01000則的值域?yàn)?,故的取值范圍?8.(2021年全國(guó)高考甲卷數(shù)學(xué)(文)試題)設(shè)函數(shù),其中.(1)討論的單調(diào)性;(2)若的圖象與軸沒(méi)有公共點(diǎn),求a的取值范圍.【答案】(1)的減區(qū)間為,增區(qū)間為;(2).【詳解】(1)函數(shù)的定義域?yàn)?,又,因?yàn)?,故,?dāng)時(shí),;當(dāng)時(shí),;所以的減區(qū)間為,增區(qū)間為.(2)因?yàn)榍业膱D與軸沒(méi)有公共點(diǎn),所以的圖象在軸的上方,由(1)中函數(shù)的單調(diào)性可得,故即.9.(2020年全國(guó)高考Ⅰ卷(文)數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)若有兩個(gè)零點(diǎn),求的取值范圍.【答案】(1)的減區(qū)間為,增區(qū)間為;(2).【詳解】(1)當(dāng)時(shí),,,令,解得,令,解得,所以的減區(qū)間為,增區(qū)間為;(2)若有兩個(gè)零點(diǎn),即有兩個(gè)解,從方程可知,不成立,即有兩個(gè)解,令,則有,令,解得,令,解得或,所以函數(shù)在和上單調(diào)遞減,在上單調(diào)遞增,且當(dāng)時(shí),,而時(shí),,當(dāng)時(shí),,所以當(dāng)有兩個(gè)解時(shí),有,所以滿足條件的的取值范圍是:.10.(2020年全國(guó)新高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若不等式恒成立,求a的取值范圍.【答案】(1)(2)【詳解】(1),,.,∴切點(diǎn)坐標(biāo)為(1,1+e),∴函數(shù)在點(diǎn)(1,f(1)處的切線方程為,即,切線與坐標(biāo)軸交點(diǎn)坐標(biāo)分別為,∴所求三角形面積為.(2)[方法一]:通性通法,,且.設(shè),則∴g(x)在上單調(diào)遞增,即在上單調(diào)遞增,當(dāng)時(shí),,∴,∴成立.當(dāng)時(shí),,,,∴存在唯一,使得,且當(dāng)時(shí),當(dāng)時(shí),,,因此>1,∴∴恒成立;當(dāng)時(shí),∴不是恒成立.綜上所述,實(shí)數(shù)a的取值范圍是[1,+∞).[方法二]【最優(yōu)解】:同構(gòu)由得,即,而,所以.令,則,所以在R上單調(diào)遞增.由,可知,所以,所以.令,則.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,則,即.所以a的取值范圍為.[方法三]:換元同構(gòu)由題意知,令,所以,所以.于是.由于,而在時(shí)為增函數(shù),故,即,分離參數(shù)后有.令,所以.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以當(dāng)時(shí),取得最大值為.所以.[方法四]:因?yàn)槎x域?yàn)?,且,所以,即.令,則,所以在區(qū)間內(nèi)單調(diào)遞增.因?yàn)?,所以時(shí),有,即.下面證明當(dāng)時(shí),恒成立.令,只需證當(dāng)時(shí),恒成立.因?yàn)椋栽趨^(qū)間內(nèi)單調(diào)遞增,則.因此要證明時(shí),恒成立,只需證明即可.由,得.上面兩個(gè)不等式兩邊相加可得,故時(shí),恒成立.當(dāng)時(shí),因?yàn)椋@然不滿足恒成立.所以a的取值范圍為.11.(2023·全國(guó)乙卷)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)是否存在a,b,使得曲線關(guān)于直線對(duì)稱(chēng),若存在,求a,b的值,若不存在,說(shuō)明理由.(3)若在存在極值,求a的取值范圍.【答案】(1);(2)存在滿足題意,理由見(jiàn)解析.(3).【詳解】(1)當(dāng)時(shí),,則,據(jù)此可得,函數(shù)在處的切線方程為,即.(2)由函數(shù)的解析式可得,函數(shù)的定義域滿足,即函數(shù)的定義域?yàn)?,定義域關(guān)于直線對(duì)稱(chēng),由題意可得,由對(duì)稱(chēng)性可知,取可得,即,則,解得,經(jīng)檢驗(yàn)滿足題意,故.即存在滿足題意.(3)由函數(shù)的解析式可得,由在區(qū)間存在極值點(diǎn),則在區(qū)間上存在變號(hào)零點(diǎn);令,則,令,在區(qū)間存在極值點(diǎn),等價(jià)于在區(qū)間上存在變號(hào)零點(diǎn),當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,此時(shí),在區(qū)間上無(wú)零點(diǎn),不合題意;當(dāng),時(shí),由于,所以在區(qū)間上單調(diào)遞增,所以,在區(qū)間上單調(diào)遞增,,所以在區(qū)間上無(wú)零點(diǎn),不符合題意;當(dāng)時(shí),由可得,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,故的最小值為,令,則,函數(shù)在定義域內(nèi)單調(diào)遞增,,據(jù)此可得恒成立,則,令,則,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,故,即(取等條件為),所以,,且注意到,根據(jù)零點(diǎn)存在性定理可知:在區(qū)間上存在唯一零點(diǎn).當(dāng)時(shí),,單調(diào)減,當(dāng)時(shí),,單調(diào)遞增,所以.令,則,則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,所以,所以函數(shù)在區(qū)間上存在變號(hào)零點(diǎn),符合題意.綜合上面可知:實(shí)數(shù)得取值范圍是.12.(2022·全國(guó)乙卷)已知函數(shù)(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)若在區(qū)間各恰有一個(gè)零點(diǎn),求a的取值范圍.【答案】(1)(2)【詳解】(1)的定義域?yàn)楫?dāng)時(shí),,所以切點(diǎn)為,所以切線斜率為2所以曲線在點(diǎn)處的切線方程為(2)設(shè)若,當(dāng),即所以在上單調(diào)遞增,故在上沒(méi)有零點(diǎn),不合題意若,當(dāng),則所以在上單調(diào)遞增所以,即所以在上單調(diào)遞增,故在上沒(méi)有零點(diǎn),不合題意若(1)當(dāng),則,所以在上單調(diào)遞增所以存在,使得,即當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增所以當(dāng),令則所以在上單調(diào)遞增,在上單調(diào)遞減,所以,又,,所以在上有唯一零點(diǎn)又沒(méi)有零點(diǎn),即在上有唯一零點(diǎn)(2)當(dāng)設(shè)所以在單調(diào)遞增所以存在,使得當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增,又所以存在,使得,即當(dāng)單調(diào)遞增,當(dāng)單調(diào)遞減,當(dāng),,又,而,所以當(dāng)所以在上有唯一零點(diǎn),上無(wú)零點(diǎn)即在上有唯一零點(diǎn)所以,符合題意所以若在區(qū)間各恰有一個(gè)零點(diǎn),求的取值范圍為13.(2021·全國(guó)甲卷)已知且,函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若曲線與直線有且僅有兩個(gè)交點(diǎn),求a的取值范圍.【答案】(1)上單調(diào)遞增;上單調(diào)遞減;(2).【詳解】(1)當(dāng)時(shí),,令得,當(dāng)時(shí),,當(dāng)時(shí),,∴函數(shù)在上單調(diào)遞增;上單調(diào)遞減;(2)[方法一]【最優(yōu)解】:分離參數(shù),設(shè)函數(shù),則,令,得,在內(nèi),單調(diào)遞增;在上,單調(diào)遞減;,又,當(dāng)趨近于時(shí),趨近于0,所以曲線與直線有且僅有兩個(gè)交點(diǎn),即曲線與直線有兩個(gè)交點(diǎn)的充分必要條件是,這即是,所以的取值范圍是.[方法二]:構(gòu)造差函數(shù)由與直線有且僅有兩個(gè)交點(diǎn)知,即在區(qū)間內(nèi)有兩個(gè)解,取對(duì)數(shù)得方程在區(qū)間內(nèi)有兩個(gè)解.構(gòu)造函數(shù),求導(dǎo)數(shù)得.當(dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞增,所以,在內(nèi)最多只有一個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),,令得,當(dāng)時(shí),;當(dāng)時(shí),;所以,函數(shù)的遞增區(qū)間為,遞減區(qū)間為.由于,當(dāng)時(shí),有,即,由函數(shù)在內(nèi)有兩個(gè)零點(diǎn)知,所以,即.構(gòu)造函數(shù),則,所以的遞減區(qū)間為,遞增區(qū)間為,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故的解為且.所以,實(shí)數(shù)a的取值范圍為.[方法三]分離法:一曲一直曲線與有且僅有兩個(gè)交點(diǎn)等價(jià)為在區(qū)間內(nèi)有兩個(gè)不相同的解.因?yàn)?,所以兩邊取?duì)數(shù)得,即,問(wèn)題等價(jià)為與有且僅有兩個(gè)交點(diǎn).①當(dāng)時(shí),與只有一個(gè)交點(diǎn),不符合題意.②當(dāng)時(shí),取上一點(diǎn)在點(diǎn)的切線方程為,即.當(dāng)與為同一直線時(shí)有得直線的斜率滿足:時(shí),與有且僅有兩個(gè)交點(diǎn).記,令,有.在區(qū)間內(nèi)單調(diào)遞增;在區(qū)間內(nèi)單調(diào)遞減;時(shí),最大值為,所當(dāng)且時(shí)有.綜上所述,實(shí)數(shù)a的取值范圍為.[方法四]:直接法.因?yàn)椋傻茫?dāng)時(shí),在區(qū)間內(nèi)單調(diào)遞減,不滿足題意;當(dāng)時(shí),,由得在區(qū)間內(nèi)單調(diào)遞增,由得在區(qū)間內(nèi)單調(diào)遞減.因?yàn)?,且,所以,即,即,兩邊取?duì)數(shù),得,即.令,則,令,則,所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,所以,所以,則的解為,所以,即.故實(shí)數(shù)a的范圍為.]14.(2021·天津·統(tǒng)考高考真題)已知,函數(shù).(I)求曲線在點(diǎn)處的切線方程:(II)證明存在唯一的極值點(diǎn)(III)若存在a,使得對(duì)任意成立,求實(shí)數(shù)b的取值范圍.【答案】(I);(II)證明見(jiàn)解析;(III)【分析】(I)求出在處的導(dǎo)數(shù),即切線斜率,求出,即可求出切線方程;(II)令,可得,則可化為證明與僅有一個(gè)交點(diǎn),利用導(dǎo)數(shù)求出的變化情況,數(shù)形結(jié)合即可求解;(III)令,題目等價(jià)于存在,使得,即,利用導(dǎo)數(shù)即可求出的最小值.【詳解】(I),則,又,則切線方程為;(II)令,則,令,則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,,當(dāng)時(shí),,畫(huà)出大致圖像如下:所以當(dāng)時(shí),與僅有一個(gè)交點(diǎn),令,則,且,當(dāng)時(shí),,則,單調(diào)遞增,當(dāng)時(shí),,則,單調(diào)遞減,為的極大值點(diǎn),故存在唯一的極值點(diǎn);(III)由(II)知,此時(shí),所以,令,若存在a,使得對(duì)任意成立,等價(jià)于存在,使得,即,,,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,故,所以實(shí)數(shù)b的取值范圍.15.(2020年全國(guó)高考Ⅰ卷)已知函數(shù).(1)當(dāng)a=1時(shí),討論f(x)的單調(diào)性;(2)當(dāng)x≥0時(shí),f(x)≥x3+1,求a的取值范圍.【答案】(1)當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.(2)【詳解】(1)當(dāng)時(shí),,,由于,故單調(diào)遞增,注意到,故:當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.(2)[方法一]【最優(yōu)解】:分離參數(shù)由得,,其中,①.當(dāng)x=0時(shí),不等式為:,顯然成立,符合題意;②.當(dāng)時(shí),分離參數(shù)a得,,記,,令,則,,故單調(diào)遞增,,故函數(shù)單調(diào)遞增,,由可得:恒成立,故當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;因此,,綜上可得,實(shí)數(shù)a的取值范圍是.[方法二]:特值探路當(dāng)時(shí),恒成立.只需證當(dāng)時(shí),恒成立.當(dāng)時(shí),.只需證明⑤式成立.⑤式,令,則,所以當(dāng)時(shí),單調(diào)遞減;當(dāng)單調(diào)遞增;當(dāng)單調(diào)遞減.從而,即,⑤式成立.所以當(dāng)時(shí),恒成立.綜上.[方法三]:指數(shù)集中當(dāng)時(shí),恒成立,記,,①.當(dāng)即時(shí),,則當(dāng)時(shí),,單調(diào)遞增,又,所以當(dāng)時(shí),,不合題意;②.若即時(shí),則當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,又,所以若滿足,只需,即,所以當(dāng)時(shí),成立;③當(dāng)即時(shí),,又由②可知時(shí),成立,所以時(shí),恒成立,所以時(shí),滿足題意.綜上,.考點(diǎn)02恒成立問(wèn)題解答題1.(2024·全國(guó)·高考甲卷文)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:當(dāng)時(shí),恒成立.【答案】(1)見(jiàn)解析(2)見(jiàn)解析【詳解】(1)定義域?yàn)椋?dāng)時(shí),,故在上單調(diào)遞減;當(dāng)時(shí),時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減.綜上所述,當(dāng)時(shí),的單調(diào)遞減區(qū)間為;時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2),且時(shí),,令,下證即可.,再令,則,顯然在上遞增,則,即在上遞增,故,即在上單調(diào)遞增,故,問(wèn)題得證2.(2023全國(guó)新高考Ⅰ卷)已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時(shí),.【答案】(1)答案見(jiàn)解析(2)證明見(jiàn)解析【詳解】(1)因?yàn)椋x域?yàn)椋?,?dāng)時(shí),由于,則,故恒成立,所以在上單調(diào)遞減;當(dāng)時(shí),令,解得,當(dāng)時(shí),,則在上單調(diào)遞減;當(dāng)時(shí),,則在上單調(diào)遞增;綜上:當(dāng)時(shí),在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)方法一:由(1)得,,要證,即證,即證恒成立,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.方法二:令,則,由于在上單調(diào)遞增,所以在上單調(diào)遞增,又,所以當(dāng)時(shí),;當(dāng)時(shí),;所以在上單調(diào)遞減,在上單調(diào)遞增,故,則,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因?yàn)?,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以要證,即證,即證,令,則,令,則;令,則;所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時(shí),恒成立,證畢.3.(2022·北京·統(tǒng)考高考真題)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)設(shè),討論函數(shù)在上的單調(diào)性;(3)證明:對(duì)任意的,有.【答案】(1)(2)在上單調(diào)遞增.(3)證明見(jiàn)解析【詳解】(1)解:因?yàn)?,所以,即切點(diǎn)坐標(biāo)為,又,∴切線斜率∴切線方程為:(2)解:因?yàn)椋?/p>
所以,令,則,∴在上單調(diào)遞增,∴∴在上恒成立,∴在上單調(diào)遞增.(3)解:原不等式等價(jià)于,令,,即證,∵,,由(2)知在上單調(diào)遞增,∴,∴∴在上單調(diào)遞增,又因?yàn)?,∴,所以命題得證.4.(2021·全國(guó)乙卷)設(shè)函數(shù),已知是函數(shù)的極值點(diǎn).(1)求a;(2)設(shè)函數(shù).證明:.【答案】(1);(2)證明見(jiàn)詳解【分析】(1)由題意求出,由極值點(diǎn)處導(dǎo)數(shù)為0即可求解出參數(shù);(2)由(1)得,且,分類(lèi)討論和,可等價(jià)轉(zhuǎn)化為要證,即證在和上恒成立,結(jié)合導(dǎo)數(shù)和換元法即可求解【詳解】(1)由,,又是函數(shù)的極值點(diǎn),所以,解得;(2)[方法一]:轉(zhuǎn)化為有分母的函數(shù)由(Ⅰ)知,,其定義域?yàn)椋C,即證,即證.(?。┊?dāng)時(shí),,,即證.令,因?yàn)椋栽趨^(qū)間內(nèi)為增函數(shù),所以.(ⅱ)當(dāng)時(shí),,,即證,由(ⅰ)分析知在區(qū)間內(nèi)為減函數(shù),所以.綜合(?。áⅲ┯校甗方法二]【最優(yōu)解】:轉(zhuǎn)化為無(wú)分母函數(shù)由(1)得,,且,當(dāng)時(shí),要證,,,即證,化簡(jiǎn)得;同理,當(dāng)時(shí),要證,,,即證,化簡(jiǎn)得;令,再令,則,,令,,當(dāng)時(shí),,單減,故;當(dāng)時(shí),,單增,故;綜上所述,在恒成立.[方法三]:利用導(dǎo)數(shù)不等式中的常見(jiàn)結(jié)論證明令,因?yàn)椋栽趨^(qū)間內(nèi)是增函數(shù),在區(qū)間內(nèi)是減函數(shù),所以,即(當(dāng)且僅當(dāng)時(shí)取等號(hào)).故當(dāng)且時(shí),且,,即,所以.(?。┊?dāng)時(shí),,所以,即,所以.(ⅱ)當(dāng)時(shí),,同理可證得.綜合(?。áⅲ┑?,當(dāng)且時(shí),,即.5.(2021·北京·統(tǒng)考高考真題)已知函數(shù).(1)若,求曲線在點(diǎn)處的切線方程;(2)若在處取得極值,求的單調(diào)區(qū)間,以及其最大值與最小值.【答案】(1);(2)函數(shù)的增區(qū)間為、,單調(diào)遞減區(qū)間為,最大值為,最小值為.【詳解】(1)當(dāng)時(shí),,則,,,此時(shí),曲線在點(diǎn)處的切線方程為,即;(2)因?yàn)?,則,由題意可得,解得,故,,列表如下:增極大值減極小值增所以,函數(shù)的增區(qū)間為、,單調(diào)遞減區(qū)間為.當(dāng)時(shí),;當(dāng)時(shí),.所以,,.6.(2021·天津·統(tǒng)考高考真題)已知,函數(shù).(I)求曲線在點(diǎn)處的切線方程:(II)證明存在唯一的極值點(diǎn)(III)若存在a,使得對(duì)任意成立,求實(shí)數(shù)b的取值范圍.【答案】(I);(II)證明見(jiàn)解析;(III)【詳解】(I),則,又,則切線方程為;(II)令,則,令,則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,,當(dāng)時(shí),,畫(huà)出大致圖像如下:所以當(dāng)時(shí),與僅有一個(gè)交點(diǎn),令,則,且,當(dāng)時(shí),,則,單調(diào)遞增,當(dāng)時(shí),,則,單調(diào)遞減,為的極大值點(diǎn),故存在唯一的極值點(diǎn);(III)由(II)知,此時(shí),所以,令,若存在a,使得對(duì)任意成立,等價(jià)于存在,使得,即,,,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,所以,故,所以實(shí)數(shù)b的取值范圍.7.(2020年全國(guó)新高考Ⅰ卷)設(shè)函數(shù),曲線在點(diǎn)(,f())處的切線與y軸垂直.(1)求b.(2)若有一個(gè)絕對(duì)值不大于1的零點(diǎn),證明:所有零點(diǎn)的絕對(duì)值都不大于1.【答案】(1);(2)證明見(jiàn)解析【分析】(1)利用導(dǎo)數(shù)的幾何意義得到,解方程即可;(2)方法一:由(1)可得,易知在上單調(diào)遞減,在,上單調(diào)遞增,且,采用反證法,推出矛盾即可.【詳解】(1)因?yàn)?,由題意,,即:,則.(2)[方法一]:通性通法由(1)可得,,令,得或;令,得,所以在上單調(diào)遞減,在,上單調(diào)遞增,且,若所有零點(diǎn)中存在一個(gè)絕對(duì)值大于1的零點(diǎn),則或,即或.當(dāng)時(shí),,又,由零點(diǎn)存在性定理知在上存在唯一一個(gè)零點(diǎn),即在上存在唯一一個(gè)零點(diǎn),在上不存在零點(diǎn),此時(shí)不存在絕對(duì)值不大于1的零點(diǎn),與題設(shè)矛盾;當(dāng)時(shí),,又,由零點(diǎn)存在性定理知在上存在唯一一個(gè)零點(diǎn),即在上存在唯一一個(gè)零點(diǎn),在上不存在零點(diǎn),此時(shí)不存在絕對(duì)值不大于1的零點(diǎn),與題設(shè)矛盾;綜上,所有零點(diǎn)的絕對(duì)值都不大于1.[方法二]【最優(yōu)解】:設(shè)是的一個(gè)零點(diǎn),且,則.從而.令,由判別式,可知在R上有解,的對(duì)稱(chēng)軸是,所以在區(qū)間上有一根為,在區(qū)間上有一根為(當(dāng)時(shí),),進(jìn)而有,所以的所有零點(diǎn)的絕對(duì)值均不大于1.[方法三]:設(shè)是函數(shù)的一個(gè)絕對(duì)值不大于1的零點(diǎn),且.設(shè),則,顯然在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.又,于是的值域?yàn)椋O(shè)為函數(shù)的零點(diǎn),則必有,于是,所以解得,即.綜上,的所有零點(diǎn)的絕對(duì)值都不大于1.[方法四]:由(1)知,,令,得或.則在區(qū)間內(nèi)遞增,在區(qū)間內(nèi)遞減,在區(qū)間內(nèi)遞增,所以的極大值為的極小值為.(?。┤?,即或,有唯一一個(gè)零點(diǎn),顯然有,不滿足題意;(ⅱ)若,即或,有兩個(gè)零點(diǎn),不妨設(shè)一個(gè)零點(diǎn)為,顯然有,此時(shí),,則,另一個(gè)零點(diǎn)為1,滿足題意;同理,若一個(gè)零點(diǎn)為,則另一個(gè)零點(diǎn)為.(ⅲ)若,即,有三個(gè)零點(diǎn),易知在區(qū)間內(nèi)有一個(gè)零點(diǎn),不妨設(shè)為,顯然有,又,,所以在內(nèi)有一個(gè)零點(diǎn)m,顯然,同理,在內(nèi)有一個(gè)零點(diǎn)n,有.綜上,所有零點(diǎn)的絕對(duì)值都不大于1.[方法五]:設(shè)是的一個(gè)零點(diǎn)且,則是的另一個(gè)零點(diǎn)..則,設(shè),由判別式,所以方程有解.假設(shè)實(shí)數(shù)滿足.由,得.與矛盾,假設(shè)不成立.所以,所有零點(diǎn)的絕對(duì)值都不大于1.(2023年全國(guó)新高考Ⅱ卷(文))(1)證明:當(dāng)時(shí),;(2)已知函數(shù),若是的極大值點(diǎn),求a的取值范圍.【答案】(1)證明見(jiàn)詳解(2)【詳解】(1)構(gòu)建,則對(duì)恒成立,則在上單調(diào)遞增,可得,所以;構(gòu)建,則,構(gòu)建,則對(duì)恒成立,則在上單調(diào)遞增,可得,即對(duì)恒成立,則在上單調(diào)遞增,可得,所以;綜上所述:.(2)令,解得,即函數(shù)的定義域?yàn)?,若,則,因?yàn)樵诙x域內(nèi)單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,則在上單調(diào)遞減,在上單調(diào)遞增,故是的極小值點(diǎn),不合題意,所以.當(dāng)時(shí),令因?yàn)?,且,所以函?shù)在定義域內(nèi)為偶函數(shù),由題意可得:,(i)當(dāng)時(shí),取,,則,由(1)可得,且,所以,即當(dāng)時(shí),,則在上單調(diào)遞增,結(jié)合偶函數(shù)的對(duì)稱(chēng)性可知:在上單調(diào)遞減,所以是的極小值點(diǎn),不合題意;(ⅱ)當(dāng)時(shí),取,則,由(1)可得,構(gòu)建,則,且,則對(duì)恒成立,可知在上單調(diào)遞增,且,所以在內(nèi)存在唯一的零點(diǎn),當(dāng)時(shí),則,且,則,即當(dāng)時(shí),,則在上單調(diào)遞減,結(jié)合偶函數(shù)的對(duì)稱(chēng)性可知:在上單調(diào)遞增,所以是的極大值點(diǎn),符合題意;綜上所述:,即,解得或,故a的取值范圍為.9.(2020年全國(guó)高考Ⅱ卷(文)數(shù)學(xué)試題)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線與兩坐標(biāo)軸圍成的三角形的面積;(2)若不等式恒成立,求a的取值范圍.【答案】(1)(2)【詳解】(1),,.,∴切點(diǎn)坐標(biāo)為(1,1+e),∴函數(shù)在點(diǎn)(1,f(1)處的切線方程為,即,切線與坐標(biāo)軸交點(diǎn)坐標(biāo)分別為,∴所求三角形面積為.(2)[方法一]:通性通法,,且.設(shè),則∴g(x)在上單調(diào)遞增,即在上單調(diào)遞增,當(dāng)時(shí),,∴,∴成立.當(dāng)時(shí),,,,∴存在唯一,使得,且當(dāng)時(shí),當(dāng)時(shí),,,因此>1,∴∴恒成立;當(dāng)時(shí),∴不是恒成立.綜上所述,實(shí)數(shù)a的取值范圍是[1,+∞).[方法二]【最優(yōu)解】:同構(gòu)由得,即,而,所以.令,則,所以在R上單調(diào)遞增.由,可知,所以,所以.令,則.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,則,即.所以a的取值范圍為.[方法三]:換元同構(gòu)由題意知,令,所以,所以.于是.由于,而在時(shí)為增函數(shù),故,即,分離參數(shù)后有.令,所以.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以當(dāng)時(shí),取得最大值為.所以.[方法四]:因?yàn)槎x域?yàn)?,且,所以,即.令,則,所以在區(qū)間內(nèi)單調(diào)遞增.因?yàn)?,所以時(shí),有,即.下面證明當(dāng)時(shí),恒成立.令,只需證當(dāng)時(shí),恒成立.因?yàn)?,所以在區(qū)間內(nèi)單調(diào)遞增,則.因此要證明時(shí),恒成立,只需證明即可.由,得.上面兩個(gè)不等式兩邊相加可得,故時(shí),恒成立.當(dāng)時(shí),因?yàn)椋@然不滿足恒成立.所以a的取值范圍為.考點(diǎn)03三角函數(shù)相關(guān)導(dǎo)數(shù)問(wèn)題一、解答題1.(2023年全國(guó)高考Ⅱ卷)(1)證明:當(dāng)時(shí),;(2)已知函數(shù),若是的極大值點(diǎn),求a的取值范圍.【答案】(1)證明見(jiàn)詳解(2)【詳解】(1)構(gòu)建,則對(duì)恒成立,則在上單調(diào)遞增,可得,所以;構(gòu)建,則,構(gòu)建,則對(duì)恒成立,則在上單調(diào)遞增,可得,即對(duì)恒成立,則在上單調(diào)遞增,可得,所以;綜上所述:.(2)令,解得,即函數(shù)的定義域?yàn)?,若,則,因?yàn)樵诙x域內(nèi)單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,則在上單調(diào)遞減,在上單調(diào)遞增,故是的極小值點(diǎn),不合題意,所以.當(dāng)時(shí),令因?yàn)?,且,所以函?shù)在定義域內(nèi)為偶函數(shù),由題意可得:,(i)當(dāng)時(shí),取,,則,由(1)可得,且,所以,即當(dāng)時(shí),,則在上單調(diào)遞增,結(jié)合偶函數(shù)的對(duì)稱(chēng)性可知:在上單調(diào)遞減,所以是的極小值點(diǎn),不合題意;(ⅱ)當(dāng)時(shí),取,則,由(1)可得,構(gòu)建,則,且,則對(duì)恒成立,可知在上單調(diào)遞增,且,所以在內(nèi)存在唯一的零點(diǎn),當(dāng)時(shí),則,且,則,即當(dāng)時(shí),,則在上單調(diào)遞減,結(jié)合偶函數(shù)的對(duì)稱(chēng)性可知:在上單調(diào)遞增,所以是的極大值點(diǎn),符合題意;綜上所述:,即,解得或,故a的取值范圍為.2.(2023·全國(guó)甲卷)已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)若恒成立,求a的取值范圍.【答案】(1)答案見(jiàn)解析.(2)【分析】(1)求導(dǎo),然后令,討論導(dǎo)數(shù)的符號(hào)即可;(2)構(gòu)造,計(jì)算的最大值,然后與0比較大小,得出的分界點(diǎn),再對(duì)討論即可.【詳解】(1)令,則則當(dāng)當(dāng),即.當(dāng),即.所以在上單調(diào)遞增,在上單調(diào)遞減(2)設(shè)設(shè)所以.若,即在上單調(diào)遞減,所以.所以當(dāng),符合題意.若當(dāng),所以..所以,使得,即,使得.當(dāng),即當(dāng)單調(diào)遞增.所以當(dāng),不合題意.綜上,的取值范圍為.3.(2022·天津·統(tǒng)考高考真題)已知,函數(shù)(1)求函數(shù)在處的切線方程;(2)若和有公共點(diǎn),(i)當(dāng)時(shí),求的取值范圍;(ii)求證:.【答案】(1)(2)(i);(ii)證明見(jiàn)解析【詳解】(1),故,而,曲線在點(diǎn)處的切線方程為即.(2)(i)當(dāng)時(shí),因?yàn)榍€和有公共點(diǎn),故有解,設(shè),故,故在上有解,設(shè),故在上有零點(diǎn),而,若,則恒成立,此時(shí)在上無(wú)零點(diǎn),若,則在上恒成立,故在上為增函數(shù),而,,故在上無(wú)零點(diǎn),故,設(shè),則,故在上為增函數(shù),而,,故在上存在唯一零點(diǎn),且時(shí),;時(shí),;故時(shí),;時(shí),;所以在上為減函數(shù),在上為增函數(shù),故,因?yàn)樵谏嫌辛泓c(diǎn),故,故,而,故即,設(shè),則,故在上為增函數(shù),而,故.(ii)因?yàn)榍€和有公共點(diǎn),所以有解,其中,若,則,該式不成立,故.故,考慮直線,表示原點(diǎn)與直線上的動(dòng)點(diǎn)之間的距離,故,所以,下證:對(duì)任意,總有,證明:當(dāng)時(shí),有,故成立.當(dāng)時(shí),即證,設(shè),則(不恒為零),故在上為減函數(shù),故即成立.綜上,成立.下證:當(dāng)時(shí),恒成立,,則,故在上為增函數(shù),故即恒成立.下證:在上恒成立,即證:,即證:,即證:,而,故成立.故,即成立.4.(2020年全國(guó)高考Ⅱ卷)已知函數(shù)f(x)=sin2xsin2x.(1)討論f(x)在區(qū)間(0,π)的單調(diào)性;(2)證明:;(3)設(shè)n∈N*,證明:sin2xsin22xsin24x…sin22nx≤.【答案】(1)當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.(3)[方法一]將所給的式子進(jìn)行恒等變形,構(gòu)造出(2)的形式,利用(2)的結(jié)論即可證得題中的不等式.【詳解】(1)由函數(shù)的解析式可得:,則:,在上的根為:,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增.(2)[方法一]【最優(yōu)解】:基本不等式法由四元均值不等式可得,當(dāng)且僅當(dāng),即或時(shí)等號(hào)成立.所以.[方法二]:構(gòu)造新函數(shù)+齊次化方法因?yàn)?,令,則問(wèn)題轉(zhuǎn)化為求的最大值.求導(dǎo)得,令,得.當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減.所以函數(shù)的最大值為,故.[方法三]:結(jié)合函數(shù)的周期性進(jìn)行證明注意到,故函數(shù)是周期為的函數(shù),結(jié)合(1)的結(jié)論,計(jì)算可得:,,,據(jù)此可得:,,即.(3)利用(2)的結(jié)論由于,所以.5.(2021年全國(guó)高考Ⅰ卷數(shù)學(xué)試題)已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);(2)若x∈[0,π]時(shí),f(x)≥ax,求a的取值范圍.【答案】(1)見(jiàn)解析;(2).【詳解】(1)令,則當(dāng)時(shí),令,解得:當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞增;在上單調(diào)遞減又,,即當(dāng)時(shí),,此時(shí)無(wú)零點(diǎn),即無(wú)零點(diǎn)
,使得又在上單調(diào)遞減
為,即在上的唯一零點(diǎn)綜上所述:在區(qū)間存在唯一零點(diǎn)(2)若時(shí),,即恒成立令則,由(1)可知,在上單調(diào)遞增;在上單調(diào)遞減且,,,①當(dāng)時(shí),,即在上恒成立在上單調(diào)遞增,即,此時(shí)恒成立②當(dāng)時(shí),,,,使得在上單調(diào)遞增,在上單調(diào)遞減又,在上恒成立,即恒成立③當(dāng)時(shí),,,使得在上單調(diào)遞減,在上單調(diào)遞增時(shí),,可知不恒成立④當(dāng)時(shí),在上單調(diào)遞減
可知不恒成立綜上所述:考點(diǎn)04導(dǎo)數(shù)類(lèi)綜合問(wèn)題1(2024·北京·高考真題)設(shè)函數(shù),直線是曲線在點(diǎn)處的切線.(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)求證:不經(jīng)過(guò)點(diǎn).(3)當(dāng)時(shí),設(shè)點(diǎn),,,為與軸的交點(diǎn),與分別表示與的面積.是否存在點(diǎn)使得成立?若存在,這樣的點(diǎn)有幾個(gè)?(參考數(shù)據(jù):,,)【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)證明見(jiàn)解析(3)2【詳解】(1),當(dāng)時(shí),;當(dāng),;在上單調(diào)遞減,在上單調(diào)遞增.則的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2),切線的斜率為,則切線方程為,將代入則,即,則,,令,假設(shè)過(guò),則在存在零點(diǎn).,在上單調(diào)遞增,,在無(wú)零點(diǎn),與假設(shè)矛盾,故直線不過(guò).(3)時(shí),.,設(shè)與軸交點(diǎn)為,時(shí),若,則此時(shí)與必有交點(diǎn),與切線定義矛盾.由(2)知.所以,則切線的方程為,令,則.,則,,記,滿足條件的有幾個(gè)即有幾個(gè)零點(diǎn).,當(dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,此時(shí)單調(diào)遞增;當(dāng)時(shí),,此時(shí)單調(diào)遞減;因?yàn)椋杂闪泓c(diǎn)存在性定理及的單調(diào)性,在上必有一個(gè)零點(diǎn),在上必有一個(gè)零點(diǎn),綜上所述,有兩個(gè)零點(diǎn),即滿足的有兩個(gè).2.(2024·天津·高考真題)設(shè)函數(shù).(1)求圖象上點(diǎn)處的切線方程;(2)若在時(shí)恒成立,求的值;(3)若,證明.【答案】(1)(2)2(3)證明過(guò)程見(jiàn)解析【詳解】(1)由于,故.所以,,所以所求的切線經(jīng)過(guò),且斜率為,故其方程為.(2)設(shè),則,從而當(dāng)時(shí),當(dāng)時(shí).所以在上遞減,在上遞增,這就說(shuō)明,即,且等號(hào)成立當(dāng)且僅當(dāng).設(shè),則.當(dāng)時(shí),的取值范圍是,所以命題等價(jià)于對(duì)任意,都有.一方面,若對(duì)任意,都有,則對(duì)有,取,得,故.再取,得,所以.另一方面,若,則對(duì)任意都有,滿足條件.綜合以上兩個(gè)方面,知的值是2.(3)先證明一個(gè)結(jié)論:對(duì),有.證明:前面已經(jīng)證明不等式,故,且,所以,即.由,可知當(dāng)時(shí),當(dāng)時(shí).所以在上遞減,在上遞增.不妨設(shè),下面分三種情況(其中有重合部分)證明本題結(jié)論.情況一:當(dāng)時(shí),有,結(jié)論成立;情況二:當(dāng)時(shí),有.對(duì)任意的,設(shè),則.由于單調(diào)遞增,且有,且當(dāng),時(shí),由可知.所以在上存在零點(diǎn),再結(jié)合單調(diào)遞增,即知時(shí),時(shí).故在上遞減,在上遞增.①當(dāng)時(shí),有;②當(dāng)時(shí),由于,故我們可以取.從而當(dāng)時(shí),由,可得.再根據(jù)在上遞減,即知對(duì)都有;綜合①②可知對(duì)任意,都有,即.根據(jù)和的任意性,取,,就得到.所以.情況三:當(dāng)時(shí),根據(jù)情況一和情況二的討論,可得,.而根據(jù)的單調(diào)性,知或.故一定有成立.綜上,結(jié)論成立.3.(2023·全國(guó)乙卷)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)是否存在a,b,使得曲線關(guān)于直線對(duì)稱(chēng),若存在,求a,b的值,若不存在,說(shuō)明理由.(3)若在存在極值,求a的取值范圍.【答案】(1);(2)存在滿足題意,理由見(jiàn)解析.(3).【詳解】(1)當(dāng)時(shí),,則,據(jù)此可得,函數(shù)在處的切線方程為,即.(2)由函數(shù)的解析式可得,函數(shù)的定義域滿足,即函數(shù)的定義域?yàn)?,定義域關(guān)于直線對(duì)稱(chēng),由題意可得,由對(duì)稱(chēng)性可知,取可得,即,則,解得,經(jīng)檢驗(yàn)滿足題意,故.即存在滿足題意.(3)由函數(shù)的解析式可得,由在區(qū)間存在極值點(diǎn),則在區(qū)間上存在變號(hào)零點(diǎn);令,則,令,在區(qū)間存在極值點(diǎn),等價(jià)于在區(qū)間上存在變號(hào)零點(diǎn),當(dāng)時(shí),,在區(qū)間上單調(diào)遞減,此時(shí),在區(qū)間上無(wú)零點(diǎn),不合題意;當(dāng),時(shí),由于,所以在區(qū)間上單調(diào)遞增,所以,在區(qū)間上單調(diào)遞增,,所以在區(qū)間上無(wú)零點(diǎn),不符合題意;當(dāng)時(shí),由可得,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,故的最小值為,令,則,函數(shù)在定義域內(nèi)單調(diào)遞增,,據(jù)此可得恒成立,則,令,則,當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,故,即(取等條件為),所以,,且注意到,根據(jù)零點(diǎn)存在性定理可知:在區(qū)間上存在唯一零點(diǎn).當(dāng)時(shí),,單調(diào)減,當(dāng)時(shí),,單調(diào)遞增,所以.令,則,則函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以,所以,所以,所以函數(shù)在區(qū)間上存在變號(hào)零點(diǎn),符合題意.綜合上面可知:實(shí)數(shù)得取值范圍是.4.(2022·全國(guó)甲卷)已知函數(shù).(1)若,求a的取值范圍;(2)證明:若有兩個(gè)零點(diǎn),則.【答案】(1)(2)證明見(jiàn)的解析【詳解】(1)[方法一]:常規(guī)求導(dǎo)的定義域?yàn)?,則令,得當(dāng)單調(diào)遞減當(dāng)單調(diào)遞增,若,則,即所以的取值范圍為[方法二]:同構(gòu)處理由得:令,則即令,則故在區(qū)間上是增函數(shù)故,即所以的取值范圍為(2)[方法一]:構(gòu)造函數(shù)由題知,一個(gè)零點(diǎn)小于1,一個(gè)零點(diǎn)大于1,不妨設(shè)要證,即證因?yàn)?即證又因?yàn)?故只需證即證即證下面證明時(shí),設(shè),則設(shè)所以,而所以,所以所以在單調(diào)遞增即,所以令所以在單調(diào)遞減即,所以;綜上,,所以.[方法二]:對(duì)數(shù)平均不等式由題意得:令,則,所以在上單調(diào)遞增,故只有1個(gè)解又因?yàn)橛袃蓚€(gè)零點(diǎn),故兩邊取對(duì)數(shù)得:,即又因?yàn)椋剩聪伦C因?yàn)椴环猎O(shè),則只需證構(gòu)造,則故在上單調(diào)遞減故,即得證5.(2022年全國(guó)新高考Ⅰ卷)已知函數(shù)和有相同的最小值.(1)求a;(2)證明:存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),并且從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.【答案】(1)(2)見(jiàn)解析【詳解】(1)的定義域?yàn)?,而,若,則,此時(shí)無(wú)最小值,故.的定義域?yàn)?,?當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.當(dāng)時(shí),,故在上為減函數(shù),當(dāng)時(shí),,故在上為增函數(shù),故.因?yàn)楹陀邢嗤淖钚≈?,故,整理得到,其中,設(shè),則,故為上的減函數(shù),而,故的唯一解為,故的解為.綜上,.(2)[方法一]:由(1)可得和的最小值為.當(dāng)時(shí),考慮的解的個(gè)數(shù)、的解的個(gè)數(shù).設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,設(shè),其中,則,故在上為增函數(shù),故,故,故有兩個(gè)不同的零點(diǎn),即的解的個(gè)數(shù)為2.設(shè),,當(dāng)時(shí),,當(dāng)時(shí),,故在上為減函數(shù),在上為增函數(shù),所以,而,,有兩個(gè)不同的零點(diǎn)即的解的個(gè)數(shù)為2.當(dāng),由(1)討論可得、僅有一個(gè)解,當(dāng)時(shí),由(1)討論可得、均無(wú)根,故若存在直線與曲線、有三個(gè)不同的交點(diǎn),則.設(shè),其中,故,設(shè),,則,故在上為增函數(shù),故即,所以,所以在上為增函數(shù),而,,故上有且只有一個(gè)零點(diǎn),且:當(dāng)時(shí),即即,當(dāng)時(shí),即即,因此若存在直線與曲線、有三個(gè)不同的交點(diǎn),故,此時(shí)有兩個(gè)不同的根,此時(shí)有兩個(gè)不同的根,故,,,所以即即,故為方程的解,同理也為方程的解又可化為即即,故為方程的解,同理也為方程的解,所以,而,故即.[方法二]:由知,,,且在上單調(diào)遞減,在上單調(diào)遞增;在上單調(diào)遞減,在上單調(diào)遞增,且①時(shí),此時(shí),顯然與兩條曲線和共有0個(gè)交點(diǎn),不符合題意;②時(shí),此時(shí),故與兩條曲線和共有2個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)分別為0和1;③時(shí),首先,證明與曲線有2個(gè)交點(diǎn),即證明有2個(gè)零點(diǎn),,所以在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)?,,,令,則,所以在上存在且只存在1個(gè)零點(diǎn),設(shè)為,在上存在且只存在1個(gè)零點(diǎn),設(shè)為其次,證明與曲線和有2個(gè)交點(diǎn),即證明有2個(gè)零點(diǎn),,所以上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)?,,,令,則,所以在上存在且只存在1個(gè)零點(diǎn),設(shè)為,在上存在且只存在1個(gè)零點(diǎn),設(shè)為再次,證明存在b,使得因?yàn)?,所以,若,則,即,所以只需證明在上有解即可,即在上有零點(diǎn),因?yàn)椋?,所以在上存在零點(diǎn),取一零點(diǎn)為,令即可,此時(shí)取則此時(shí)存在直線,其與兩條曲線和共有三個(gè)不同的交點(diǎn),最后證明,即從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列,因?yàn)樗?,又因?yàn)樵谏蠁握{(diào)遞減,,即,所以,同理,因?yàn)?,又因?yàn)樵谏蠁握{(diào)遞增,即,,所以,又因?yàn)?,所以,即直線與兩條曲線和從左到右的三個(gè)交點(diǎn)的橫坐標(biāo)成等差數(shù)列.6.(2022年全國(guó)高考Ⅱ卷)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),,求a的取值范圍;(3)設(shè),證明:.【答案】(1)的減區(qū)間為,增區(qū)間為.(2)(3)見(jiàn)解析【詳解】(1)當(dāng)時(shí),,則,當(dāng)時(shí),,當(dāng)時(shí),,故的減區(qū)間為,增區(qū)間為.(2)設(shè),則,又,設(shè),則,若,則,因?yàn)闉檫B續(xù)不間斷函數(shù),故存在,使得,總有,故在為增函數(shù),故,故在為增函數(shù),故,與題設(shè)矛盾.若,則,下證:對(duì)任意,總有成立,證明:設(shè),故,故在上為減函數(shù),故即成立.由上述不等式有,故總成立,即在上為減函數(shù),所以.當(dāng)時(shí),有,
所以在上為減函數(shù),所以.綜上,.(3)取,則,總有成立,令,則,故即對(duì)任意的恒成立.所以對(duì)任意的,有,整理得到:,故,故不等式成立.7.(2021·全國(guó)乙卷)設(shè)函數(shù),已知是函數(shù)的極值點(diǎn).(1)求a;(2)設(shè)函數(shù).證明:.【答案】(1);(2)證明見(jiàn)詳解【分析】(1)由題意求出,由極值點(diǎn)處導(dǎo)數(shù)為0即可求解出參數(shù);(2)由(1)得,且,分類(lèi)討論和,可等價(jià)轉(zhuǎn)化為要證,即證在和上恒成立,結(jié)合導(dǎo)數(shù)和換元法即可求解【詳解】(1)由,,又是函數(shù)的極值點(diǎn),所以,解得;(2)[方法一]:轉(zhuǎn)化為有分母的函數(shù)由(Ⅰ)知,,其定義域?yàn)椋C,即證,即證.(?。┊?dāng)時(shí),,,即證.令,因?yàn)?,所以在區(qū)間內(nèi)為增函數(shù),所以.(ⅱ)當(dāng)時(shí),,,即證,由(?。┓治鲋趨^(qū)間內(nèi)為減函數(shù),所以.綜合(?。áⅲ┯校甗方法二]【最優(yōu)解】:轉(zhuǎn)化為無(wú)分母函數(shù)由(1)得,,且,當(dāng)時(shí),要證,,,即證,化簡(jiǎn)得;同理,當(dāng)時(shí),要證,,,即證,化簡(jiǎn)得;令,再令,則,,令,,當(dāng)時(shí),,單減,故;當(dāng)時(shí),,單增,故;綜上所述,在恒成立.[方法三]:利用導(dǎo)數(shù)不等式中的常見(jiàn)結(jié)論證明令,因?yàn)?,所以在區(qū)間內(nèi)是增函數(shù),在區(qū)間內(nèi)是減函數(shù),所以,即(當(dāng)且僅當(dāng)時(shí)取等號(hào)).故當(dāng)且時(shí),且,,即,所以.(ⅰ)當(dāng)時(shí),,所以,即,所以.(ⅱ)當(dāng)時(shí),,同理可證得.綜合(?。áⅲ┑?,當(dāng)且時(shí),,即.8.(2022年全國(guó)新高考Ⅰ卷)已知函數(shù).(1)討論的單調(diào)性;(2)設(shè),為兩個(gè)不相等的正數(shù),且,證明:.【答案】(1)的遞增區(qū)間為,遞減區(qū)間為;(2)證明見(jiàn)解析.【詳解】(1)的定義域?yàn)椋傻?,,?dāng)時(shí),;當(dāng)時(shí);當(dāng)時(shí),.故在區(qū)間內(nèi)為增函數(shù),在區(qū)間內(nèi)為減函數(shù),(2)[方法一]:等價(jià)轉(zhuǎn)化由得,即.由,得.由(1)不妨設(shè),則,從而,得,①令,則,當(dāng)時(shí),,在區(qū)間內(nèi)為減函數(shù),,從而,所以,由(1)得即.①令,則,當(dāng)時(shí),,在區(qū)間內(nèi)為增函數(shù),,從而,所以.又由,可得,所以.②由①②得.[方法二]【最優(yōu)解】:變形為,所以.令.則上式變?yōu)椋谑敲}轉(zhuǎn)換為證明:.令,則有,不妨設(shè).由(1)知,先證.要證:.令,則,在區(qū)間內(nèi)單調(diào)遞增,所以,即.再證.因?yàn)?,所以需證.令,所以,故在區(qū)間內(nèi)單調(diào)遞增.所以.故,即.綜合可知.[方法三]:比值代換證明同證法2.以下證明.不妨設(shè),則,由得,,要證,只需證,兩邊取對(duì)數(shù)得,即,即證.記,則.記,則,所以,在區(qū)間內(nèi)單調(diào)遞減.,則,所以在區(qū)間內(nèi)單調(diào)遞減.由得,所以,即.[方法四]:構(gòu)造函數(shù)法由已知得,令,不妨設(shè),所以.由(Ⅰ)知,,只需證.證明同證法2.再證明.令.令,則.所以,在區(qū)間內(nèi)單調(diào)遞增.因?yàn)?,所以,即又因?yàn)?,所以,即.因?yàn)椋裕矗C上,有結(jié)論得證.9.(2022年全國(guó)新高考Ⅱ卷)已知函數(shù).(1)討論的單調(diào)性;(2)從下面兩個(gè)條件中選一個(gè),證明:只有一個(gè)零點(diǎn)①;②.【答案】(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.【詳解】(1)由函數(shù)的解析式可得:,當(dāng)時(shí),若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時(shí),若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),若,則單調(diào)遞增,若,則單調(diào)遞減,若,則單調(diào)遞增;(2)若選擇條件①:由于,故,則,而,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒(méi)有零點(diǎn).綜上可得,題中的結(jié)論成立.若選擇條件②:由于,故,則,當(dāng)時(shí),,,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).當(dāng)時(shí),構(gòu)造函數(shù),則,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,注意到,故恒成立,從而有:,此時(shí):,當(dāng)時(shí),,取,則,即:,而函數(shù)在區(qū)間上單調(diào)遞增,故函數(shù)在區(qū)間上有一個(gè)零點(diǎn).,由于,,故,結(jié)合函數(shù)的單調(diào)性可知函數(shù)在區(qū)間上沒(méi)有零點(diǎn).綜上可得,題中的結(jié)論成立.10.(2020年全國(guó)高考Ⅲ卷)設(shè)函數(shù),曲線在點(diǎn)(,f())處的切線與y軸垂直.(1)求b.(2)若有一個(gè)絕對(duì)值不大于1的零點(diǎn),證明:所有零點(diǎn)的絕對(duì)值都不大于1.【答案】(1);(2)證明見(jiàn)解析【詳解】(1)因?yàn)椋深}意,,即:,則.(2)[方法一]:通性通法由(1)可得,,令,得或;令,得,所以在上單調(diào)遞減,在,上單調(diào)遞增,且,若所有零點(diǎn)中存在一個(gè)絕對(duì)值大于1的零點(diǎn),則或,即或.當(dāng)時(shí),,又,由零點(diǎn)存在性定理知在上存在唯一一個(gè)零點(diǎn),即在上存在唯一一個(gè)零點(diǎn),在上不存在零點(diǎn),此時(shí)不存在絕對(duì)值不大于1的零點(diǎn),與題設(shè)矛盾;當(dāng)時(shí),,又,由零點(diǎn)存在性定理知在上存在唯一一個(gè)零點(diǎn),即在上存在唯一一個(gè)零點(diǎn),在上不存在零點(diǎn),此時(shí)不存在絕對(duì)值不大于1的零點(diǎn),與題設(shè)矛盾;綜上,所有零點(diǎn)的絕對(duì)值都不大于1.[方法二]【最優(yōu)解】:設(shè)是的一個(gè)零點(diǎn),且,則.從而.令,由判別式,可知在R上有解,的對(duì)稱(chēng)軸是,所以在區(qū)間上有一根為,在區(qū)間上有一根為(當(dāng)時(shí),),進(jìn)而有,所以的所有零點(diǎn)的絕對(duì)值均不大于1.[方法三]:設(shè)是函數(shù)的一個(gè)絕對(duì)值不大于1的零點(diǎn),且.設(shè),則,顯然在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減.又,于是的值域?yàn)椋O(shè)為函數(shù)的零點(diǎn),則必有,于是,所以解得,即.綜上,的所有零點(diǎn)的絕對(duì)值都不大于1.[方法四]:由(1)知,,令,得或.則在區(qū)間內(nèi)遞增,在區(qū)間內(nèi)遞減,在區(qū)間內(nèi)遞增,所以的極大值為的極小值為.(ⅰ)若,即或,有唯一一個(gè)零點(diǎn),顯然有,不滿足題意;(ⅱ)若,即或,有兩個(gè)零點(diǎn),不妨設(shè)一個(gè)零點(diǎn)為,顯然有,此時(shí),,則,另一個(gè)零點(diǎn)為1,滿足題意;同理,若一個(gè)零點(diǎn)為,則另一個(gè)零點(diǎn)為.(ⅲ)若,即,有三個(gè)零點(diǎn),易知在區(qū)間內(nèi)有一個(gè)零點(diǎn),不妨設(shè)為,顯然有,又,,所以在內(nèi)有一個(gè)零點(diǎn)m,顯然,同理,在內(nèi)有一個(gè)零點(diǎn)n,有.綜上,所有零點(diǎn)的絕對(duì)值都不大于1.[方法五]:設(shè)是的一個(gè)零點(diǎn)且,則是的另一個(gè)零點(diǎn)..則,設(shè),由判別式,所以方程有解.假設(shè)實(shí)數(shù)滿足.由,得.與矛盾,假設(shè)不成立.所以,所有零點(diǎn)的絕對(duì)值都不大于1.11.(2023·北京·統(tǒng)考高考真題)設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.(1)求的值;(2)設(shè)函數(shù),求的單調(diào)區(qū)間;(3)求的極值點(diǎn)個(gè)數(shù).【答案】(1)(2)答案見(jiàn)解析(3)3個(gè)【詳解】(1)因?yàn)椋?,因?yàn)樵谔幍那芯€方程為,所以,,則,解得,所以.(2)由(1)得,則,令,解得,不妨設(shè),,則,易知恒成立,所以令,解得或;令,解得或;所以在,上單調(diào)遞減,在,上單調(diào)遞增,即的單調(diào)遞減區(qū)間為和,單調(diào)遞增區(qū)間為和.(3)由(1)得,,由(2)知在,上單調(diào)遞減,在,上單調(diào)遞增,當(dāng)時(shí),,,即所以在上存在唯一零點(diǎn),不妨設(shè)為,則,此時(shí),當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增;所以在上有一個(gè)極小值點(diǎn);當(dāng)時(shí),在上單調(diào)遞減,則,故,所以在上存在唯一零點(diǎn),不妨設(shè)為,則,此時(shí),當(dāng)時(shí),,則單調(diào)遞增;當(dāng)時(shí),,則單調(diào)遞減;所以在上有一個(gè)極大值點(diǎn);當(dāng)時(shí),在上單調(diào)遞增,則,故,所以在上存在唯一零點(diǎn),不妨設(shè)為,則,此時(shí),當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增;所以在上有一個(gè)極小值點(diǎn);當(dāng)時(shí),,所以,則單調(diào)遞增,所以在上無(wú)極值點(diǎn);綜上:在和上各有一個(gè)極小值點(diǎn),在上有一個(gè)極大值點(diǎn),共有個(gè)極值點(diǎn).12.(2023·天津·統(tǒng)考高考真題)已知函數(shù).(1)求曲線在處切線的斜率;(2)當(dāng)時(shí),證明:;(3)證明:.【答案】(1)(2)證明見(jiàn)解析(3)證明見(jiàn)解析【詳解】(1),則,所以,故處的切線斜率為;(2)要證時(shí),即證,令且,則,所以在上遞增,則,即.所以時(shí).(3)設(shè),,則,由(2)知:,則,所以,故在上遞
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司股東合作章程協(xié)議
- 應(yīng)對(duì)企業(yè)運(yùn)營(yíng)挑戰(zhàn)的綜合性解決方案
- 離婚協(xié)議戶口遷移協(xié)議書(shū)
- 金屬礦產(chǎn)品采購(gòu)與銷(xiāo)售合同
- 藥師資格證書(shū)租賃協(xié)議
- 物業(yè)經(jīng)理聘用合同
- 浙江省八年級(jí)歷史與社會(huì)上冊(cè)(人教)1.3《西方古典文明》 教學(xué)設(shè)計(jì)
- 關(guān)于建房的協(xié)議書(shū)范本7篇
- 第三單元 我們的國(guó)土 我們的家園(整體教學(xué)設(shè)計(jì))-2024-2025學(xué)年道德與法治五年級(jí)上冊(cè)統(tǒng)編版
- 新津三星級(jí)酒店施工方案
- 2023年湛江市麻章區(qū)教育局招聘事業(yè)編制教師考試真題
- 電梯維保方案完整版
- 典籍里的中國(guó)
- (高清版)DZT 0208-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 金屬砂礦類(lèi)
- 礦山開(kāi)采與環(huán)境保護(hù)
- 《建設(shè)工程監(jiān)理》課件
- 區(qū)域經(jīng)理年終工作總結(jié)匯報(bào)
- (完整版)語(yǔ)文寫(xiě)作方格紙模板
- 勞動(dòng)防護(hù)用品培訓(xùn)試卷帶答案
- ORACLE執(zhí)行計(jì)劃和SQL調(diào)優(yōu)
- 二年級(jí)上冊(cè)加減混合計(jì)算400題及答案
評(píng)論
0/150
提交評(píng)論