




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
比大小歸類目錄TOC\o"1-1"\h\u題型一:基礎函數(shù):指數(shù)函數(shù)性質(zhì) 1題型二:基礎函數(shù):對數(shù)函數(shù)性質(zhì) 2題型三:冪指對函數(shù)性質(zhì) 3題型四:借助0、1分界 4題型五:指數(shù)型同構(gòu)法 5題型六:借助常數(shù)分界 5題型七:放縮型 6題型八:構(gòu)造型1:對數(shù)冪型 7題型九:構(gòu)造型2:指數(shù)冪型 8題型十:構(gòu)造型3:指數(shù)線性構(gòu)造 9題型十一:構(gòu)造型4:對數(shù)線性構(gòu)造 10題型十二:構(gòu)造型5:三角函數(shù)線性構(gòu)造 10題型十三:構(gòu)造型6:綜合構(gòu)造 11題型十四:三角函數(shù)型構(gòu)造比大小 12題型十五:冪指對與三角函數(shù)混合型 12題型十六:泰勒展開 13題型十七:麥克勞林展開 14題型一:基礎函數(shù):指數(shù)函數(shù)性質(zhì)指數(shù)函數(shù)比大小易錯點:指數(shù)函數(shù)比大小易錯點:1.利用指數(shù)函數(shù)的單調(diào)性時要根據(jù)底數(shù)與的大小區(qū)別對待.2.指數(shù)函數(shù)在第一象限圖像,具有“底大圖高”的性質(zhì)3.指數(shù)函數(shù)圖像性質(zhì):一點一線。恒過定點(0,1),x軸是它的水平漸近線4.進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.1.(23-24高三·湖南衡陽·階段練習)設,,,則(
)A. B. C. D.2.(23-24高三·云南昆明·模擬)已知,(為自然對數(shù)的底數(shù)),比較,,的大?。?/p>
)A. B.C. D.3.(23-24高三·寧夏銀川·階段練習)已知函數(shù),,且,則()A.,, B.,,C. D.4.(2023·貴州畢節(jié)·模擬預測)已知實數(shù)滿足,且,則(
)A. B. C. D.5.(22-23高三·山東威?!つM)已知函數(shù),若,,,則(
)A. B.C. D.題型二:基礎函數(shù):對數(shù)函數(shù)性質(zhì)對數(shù)函數(shù)比大小,主要時通過對數(shù)計算公式轉(zhuǎn)化為結(jié)果相同,利用單調(diào)性比大小對數(shù)函數(shù)比大小,主要時通過對數(shù)計算公式轉(zhuǎn)化為結(jié)果相同,利用單調(diào)性比大小對數(shù)運算公式1.對數(shù)的運算法則:①loga(MN)=logaM+logaN ②logaeq\f(M,N)=logaM-logaN;③logaMn=nlogaM(n∈R); ④logamMn=eq\f(n,m)logaM.2.對數(shù)的性質(zhì):①a=N; ②logaaN=N(a>0且a≠1).3.對數(shù)的重要公式①換底公式:logbN=eq\f(logaN,logab); ②換底推廣:logab=eq\f(1,logba),logab·logbc·logcd=logad.1.(22-23高三下·河南·階段練習)已知,,,,則(
)A. B. C. D.2.(23-24高三·江蘇泰州·模擬)已知三個互不相等的正數(shù)滿足,(其中是一個無理數(shù)),則的大小關(guān)系為(
)A. B.C. D.3.(2024·重慶·模擬預測)設,,,則(
)A. B.C. D.4.(2024·遼寧·一模)設,,,則(
)A. B. C. D.5.(23-24高三·廣東佛山·模擬)已知,則a,b,c的大小關(guān)系為(
)A. B. C. D.題型三:冪指對函數(shù)性質(zhì)有關(guān)指數(shù)冪和對數(shù)值的比較大小問題,在解題的過程中,注意應用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,確定其對應值的范圍.有關(guān)指數(shù)冪和對數(shù)值的比較大小問題,在解題的過程中,注意應用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,確定其對應值的范圍.比較指對冪形式的數(shù)的大小關(guān)系,常用方法:(1)利用指數(shù)函數(shù)的單調(diào)性:,當時,函數(shù)遞增;當時,函數(shù)遞減;(2)利用對數(shù)函數(shù)的單調(diào)性:,當時,函數(shù)遞增;當時,函數(shù)遞減;(3)借助于中間值,例如:0或1等.1.(23-24高三·遼寧朝陽·階段練習)已知,,,則(
)A. B. C. D.2.(23-24高三江蘇泰州·模擬)已知三個互不相等的正數(shù)滿足,(其中是一個無理數(shù)),則的大小關(guān)系為(
)A. B.C. D.3.(2023·河南·模擬預測)已知,則的大小關(guān)系是(
)A. B. C. D.4.(22-23高三·河北唐山·階段練習)設,,,則a,b,c的大小順序是(
)A. B. C. D.5.(2022·河南·一模)已知,則這三個數(shù)的大小關(guān)系為(
)A. B. C. D.6.(2024年高考天津卷)若,則的大小關(guān)系為()A. B. C. D.題型四:借助0、1分界解答比較函數(shù)值大小問題,常見的解答比較函數(shù)值大小問題,常見的基礎思路之一是判斷各個數(shù)值所在的區(qū)間,這樣的區(qū)間劃分,最基礎的是以正負劃分,正數(shù)則以1為區(qū)間端點劃分。指、對、冪大小比較的常用方法:(1)底數(shù)相同,指數(shù)不同時,如和,利用指數(shù)函數(shù)的單調(diào)性;(2)指數(shù)相同,底數(shù)不同,如和利用冪函數(shù)單調(diào)性比較大??;(3)底數(shù)相同,真數(shù)不同,如和利用指數(shù)函數(shù)單調(diào)性比較大??;(4)底數(shù)、指數(shù)、真數(shù)都不同,尋找中間變量0,1或者其它能判斷大小關(guān)系的中間量,借助中間量進行大小關(guān)系的判定.1.(23-24高三·遼寧朝陽·階段練習)已知,,,則(
)A. B. C. D.2.(黑龍江省樺南縣第一中學2021-2022學年高三上學期)已知,,,則a,b,c的大小關(guān)系為()A. B.C. D.3.(廣東省陸豐市林啟恩紀念中學2021-2022學年高三學期(12月)數(shù)學試題)已知,,,則,,三者的大小關(guān)系是()A. B. C. D.4.(陜西省西安市第一中學2021-2022學年高三上學期期中)已知定義在R上的函數(shù)滿足當時,不等式恒成立,若,,,則a,b,c大小關(guān)系為()A. B. C. D.題型五:指數(shù)型同構(gòu)法指數(shù)冪指數(shù)冪同構(gòu)性比較大小①同底冪比較,構(gòu)造指數(shù)函數(shù),用單調(diào)性比較; ②同指數(shù)冪比較,構(gòu)造冪函數(shù),用單調(diào)性比較;③不同底也不同指冪比較,借助媒介“1”.1.(江蘇省鎮(zhèn)江市2021-2022學年高三上學期期中數(shù)學試題)已知,,,,則下列大小關(guān)系正確的為()A. B. C. D.2..(四川省宜賓市普通高中2022屆高三上學期第一次診斷測試文科數(shù)學試題)若,則的大小關(guān)系是()A. B.C. D.3.(陜西省西安中學2021-2022學年上學期數(shù)學試題)若,則三者大小關(guān)系為()A.B.C.D.4..已知三個實數(shù)a,,,其中,則這三個數(shù)的大小關(guān)系是()A. B. C. D.題型六:借助常數(shù)分界尋找非0、1的中間變量是難點。中間變量的選擇首先要估算要比較大小的兩個值所在的大致區(qū)間。然后可以對區(qū)間使用二分法(或者利用區(qū)間內(nèi)特殊值,或者利用指對互化)尋找合適的中間值。尋找非0、1的中間變量是難點。中間變量的選擇首先要估算要比較大小的兩個值所在的大致區(qū)間。然后可以對區(qū)間使用二分法(或者利用區(qū)間內(nèi)特殊值,或者利用指對互化)尋找合適的中間值。1.估算要比較大小的兩個值所在的大致區(qū)間2.可以對區(qū)間使用二分法(或者利用指對轉(zhuǎn)化)尋找合適的中間值3.利用冪指對等函數(shù)計算公式進行適當?shù)姆趴s轉(zhuǎn)化1.(陜西省西安市第一中學2024屆高三下學期高考模擬押題文科數(shù)學試題(一))若,則有(
)A. B.C. D.2.(2024年普通高等學校招生全國統(tǒng)一考試數(shù)學理科猜題卷(四))已知,,,則的大小關(guān)系為(
)A. B. C. D.3.(2022年全國著名重點中學領(lǐng)航高考沖刺試卷(九))若,,,則,,的大小關(guān)系為()A. B.C. D.4.(廣西師大附屬外國語學校2021屆高三5月高考考前模擬考試數(shù)學(理)試題)已知,,,,則、、、的大小關(guān)系是()A. B.C. D.題型七:放縮型放縮:放縮:1.借助冪指對函數(shù)的單調(diào)性進行放縮。2.常用一些放縮公式:;當時取等;,當時取等,1.(湖北省恩施州咸豐春暉學校2022-2023學年高二上學期11月月考數(shù)學試題)若,,,則它們的大小關(guān)系是(
)A. B. C. D.2.(山東省棗莊市第三中學2021-2022學年高三質(zhì)量檢測數(shù)學試題)已知,,,則a,b,c的大小關(guān)系為(
)A. B.C. D.3.若,,,則a,b,c的大小關(guān)系為(
).A. B.C. D.4.設,,,則a,b,c的大小關(guān)系為______.(用“<”連接)江蘇省南京師范大學附屬中學2022-2023學年高一上學期12月階段性測試數(shù)學試題題型八:構(gòu)造型1:對數(shù)冪型常見的構(gòu)造函數(shù)求導思維:在于轉(zhuǎn)化過程中,“分參”常見的構(gòu)造函數(shù)求導思維:在于轉(zhuǎn)化過程中,“分參”→“構(gòu)造”,得新函數(shù),求導函數(shù)尋找單調(diào)性對數(shù)冪常見的構(gòu)造:構(gòu)造對數(shù)冪型:比較常見的對數(shù)冪型函數(shù)圖像1.(2023·江西景德鎮(zhèn)·統(tǒng)考一模)設,,(e為自然對數(shù)底數(shù)),則a,b,c大小關(guān)系為(
)A. B.C. D.2.(2023上·陜西安康·高三校聯(lián)考階段練習)已知,則(
)A. B.C. D.3.(2023·河南·校聯(lián)考模擬預測)設,,,則(
)A. B. C. D.4.(2023·遼寧撫順·??寄M預測)已知,,,則(
)A. B. C. D.題型九:構(gòu)造型2:指數(shù)冪型構(gòu)造對數(shù)冪型:構(gòu)造對數(shù)冪型:比較常見的對數(shù)冪型函數(shù)圖像1.(2023·安徽·校聯(lián)考模擬預測)已知實數(shù),且,,,則(
)A. B. C. D.2.(2023·遼寧大連·校聯(lián)考模擬預測)已知,,,則a,b,c的大小關(guān)系是(
)A. B. C. D.3.(2023下·江蘇南京·高三南京師范大學附屬中學江寧分校校聯(lián)考階段練習)設,則,,的大小關(guān)系為(
)A. B.C. D.4.(2023·江蘇徐州·徐州市第七中學校考一模)已知,,(其中為自然常數(shù)),則、、的大小關(guān)系為(
)A. B. C. D.題型十:構(gòu)造型3:指數(shù)線性構(gòu)造指數(shù)線性型構(gòu)造特征:指數(shù)線性型構(gòu)造特征:多以e為底數(shù),構(gòu)造+kx+b等形式函數(shù),求導,判斷單調(diào)性比大小1.(2022·全國·模擬預測)已知,,則(
)A. B. C. D.2.(2022下·四川綿陽·高三四川省綿陽南山中學??迹┰O,,,則(
)A. B. C. D.3.(2023·河南平頂山·校聯(lián)考模擬預測)已知,,,則下列不等式成立的是(
)A. B. C. D.4.已知,則a,b,c的大小關(guān)系為()A. B. C. D.題型十一:構(gòu)造型4:對數(shù)線性構(gòu)造對數(shù)線性型構(gòu)造特征:對數(shù)線性型構(gòu)造特征:多以e為底數(shù),構(gòu)造lnx+kx+b等形式函數(shù),求導,判斷單調(diào)性比大小1.(2022上·江蘇鎮(zhèn)江·高三校考期中)已知,,,其中,,,則(
)A. B.C. D.2.(2022·全國·高三專題練習)已知則(
)A. B. C. D.3.(2022上·河南·高三校聯(lián)考開學考試)設,,,則(
)A. B. C. D.4.(2022下·貴州貴陽·高三校聯(lián)考)設,,,則a,b,c的大小關(guān)系是(
)A. B. C. D.題型十二:構(gòu)造型5:三角函數(shù)線性構(gòu)造三角線性型構(gòu)造特征:三角線性型構(gòu)造特征:構(gòu)造sinx+kx+b或cosx+kx+等形式函數(shù),求導,判斷單調(diào)性比大小1.(2022上·浙江·高三紹興魯迅中學校聯(lián)考階段練習)設,,,則(
)A. B. C. D.2.(2022·四川內(nèi)江·統(tǒng)考二模)設,,,則a,b,c的大小關(guān)系正確的是(
)A. B. C. D.3.(2021上·江蘇南京·高三校聯(lián)考階段練習)已知,,,則(
)A. B. C. D.4.(2023下·湖南株洲·高三株洲二中??奸_學考試),,,則的大小關(guān)系為(
).A. B.C. D.題型十三:構(gòu)造型6:綜合構(gòu)造在構(gòu)造函數(shù)時首先把要比較的值變形為含有一個共同的數(shù)值,將這個數(shù)值換成變量在構(gòu)造函數(shù)時首先把要比較的值變形為含有一個共同的數(shù)值,將這個數(shù)值換成變量就有了函數(shù)的形式,如在第一題中,將視為,將視為函數(shù)與的函數(shù)值,從而只需比較與這兩個函數(shù)大小關(guān)系即可.相對是先慢后快,相對是先快后慢,解題過程中可先畫出函數(shù)在區(qū)間上的圖象,根據(jù)圖象來確定大小關(guān)系.1.(2024·黑龍江哈爾濱·模擬預測)設,則大小關(guān)系(
)A. B. C. D.2.(2023·山東·模擬預測)已知,,,其中為自然對數(shù)的底數(shù),則,,的大小關(guān)系是(
)A. B.C. D.3.(21-22高三上·江西景德鎮(zhèn)·階段練習)已知,,,則,,的大小關(guān)系是(
)A. B.C. D.4.(23-24高三·山東·階段練習)已知實數(shù)滿足,,,則,,的大小關(guān)系是(
)A. B.C. D.題型十四:三角函數(shù)型構(gòu)造比大小三角函數(shù)與三角函數(shù)值比較大?。喝呛瘮?shù)與三角函數(shù)值比較大?。?.借助于三角函數(shù)的周期性,對稱性,誘導公式等,轉(zhuǎn)化為一個單調(diào)區(qū)間內(nèi)比大小2.借助一些三角函數(shù)不等式進行放縮轉(zhuǎn)化:如當(0,)時,3.構(gòu)造含有三角函數(shù)式的函數(shù),求導后借助單調(diào)性比大小1.已知,則的大小關(guān)系為(
)A. B. C. D.2.(安徽省安慶市第一中學2022屆高三熱身考試數(shù)學試題)已知函數(shù)與函數(shù)在區(qū)間都為減函數(shù),設,且,,,則的大小關(guān)系是A. B. C. D.3.(2023·全國·高三專題練習)已知,,,,則(
)A. B. C. D.4.已知則的大小關(guān)系是__________.題型十五:冪指對與三角函數(shù)混合型函數(shù)函數(shù)y=sinxy=cosxy=tanx圖象三角函數(shù)基礎圖像1.(廣東省中山市中山紀念中學2021-2022學年高三上學期第二次段考數(shù)學試題)在必修第一冊教材“8.2.1幾個函數(shù)模型的比較”一節(jié)的例2中,我們得到如下結(jié)論:當或時,;當時,,請比較,,的大小關(guān)系A. B. C. D.2.已知,,,則,,的大小關(guān)系正確的是(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit2 Mocky's Friends(教學設計)-2024-2025學年北師大版(一起)英語二年級上冊
- 人教版《歷史與社會》八年級上冊(新)同步教學設計:第2單元 第3課《日本的大化改新》
- 員工保密及競業(yè)禁止協(xié)議
- 許昌襄城雙廟110千伏輸變電工程環(huán)境影響報告表【模板】
- 2025至2030年中國麻疹病毒抗體數(shù)據(jù)監(jiān)測研究報告
- 《習作:神奇的探險之旅》教學設計-2023-2024學年統(tǒng)編版語文五年級下冊
- 2025至2030年中國鋅合金首飾盒數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國配茶蠟鐵燭臺數(shù)據(jù)監(jiān)測研究報告
- 租厝合同范本
- 2025至2030年中國組合收納箱數(shù)據(jù)監(jiān)測研究報告
- (全)電梯安全風險管控清單
- 護士服裝史話
- 2022年03月江蘇無錫市新吳區(qū)新安街道城管隊員招考聘用10人筆試題庫含答案解析
- 農(nóng)藥經(jīng)營管理知識培訓專家講座
- 《自主創(chuàng)新對于鋼結(jié)構(gòu)發(fā)展的重要性》2400字
- 食品采購與進貨臺賬
- GB/T 24353-2022風險管理指南
- GB/T 6284-2006化工產(chǎn)品中水分測定的通用方法干燥減量法
- GB/T 3003-2017耐火纖維及制品
- GB/T 22080-2016信息技術(shù)安全技術(shù)信息安全管理體系要求
- 制藥工程導論課件
評論
0/150
提交評論