白皮書(shū) 2030 年電池創(chuàng)新路線圖part2_第1頁(yè)
白皮書(shū) 2030 年電池創(chuàng)新路線圖part2_第2頁(yè)
白皮書(shū) 2030 年電池創(chuàng)新路線圖part2_第3頁(yè)
白皮書(shū) 2030 年電池創(chuàng)新路線圖part2_第4頁(yè)
白皮書(shū) 2030 年電池創(chuàng)新路線圖part2_第5頁(yè)
已閱讀5頁(yè),還剩80頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

-

TECHNICALANNEX

PbLiNiNa

Contents

SCOPEANDPURPOSEOFTHETECHNICALANNEX

4

PARTI:IDENTIFIEDBATTERYTECHNOLOGIESANDTHEIRPOTENTIAL

5

A.MAINSTREAMBATTERYTECHNOLOGIESANDTHEIRINNOVATIONPOTENTIAL

5

A.1.Lead-basedbatteries

6

A.2.Lithium-basedbatteries

7

A.3.Nickel-basedbatteries

9

A.4.Sodium-basedbatteries

10

B.FUTUREBATTERYTECHNOLOGIESANDTHEIRPOTENTIAL

11

PARTII:BATTERYEND-USERAPPLICATIONR&DFOCUSAREA

16

A.R&DAREA-AUTOMOTIVEMOBILITY

16

A.1.Automotive12Vauxiliarybatteries

17

A.2.Automotive12VStart-Lighting-Ignitionbatteries(SLIbatteries)

19

A.3.Heavycommercialvehiclestand-bybatteries

20

A.4.AutomotiveHybridElectricVehiclepropulsionbatteries(HEVs)

21

A.5.AutomotiveBatteryElectricVehicles(BEVs)

22

B.R&DAREA-MOTIVEPOWERMATERIALHANDLINGANDLOGISTICSAPPLICATIONS

24

C.R&DAREA-MOTIVEPOWEROFF-ROADTRANSPORTATION

25

C.1.Batteriesinoff-roadindustrialvehicles

25

C.2.Batteriesinrailwayapplications

26

C.3.BatteriesinMarineapplications

27

C.4.BatteriesinAviationapplications

30

D.R&DAREA:BATTERIESFORSTATIONARYENERGYSTORAGE

32

D.1.Batteriesforuninterruptedpowersupply(UPS)

32

D.2.BatteriesforTelecom(TLC)

34

D.3.Batteriesforresidentialandcommercialenergystoragebehindthemeter

36

D.4.Batteriesforutilitygrid-scalestorage(large-scaleESS–infrontofthemeter)

38

D.5.Batteriesinoff-gridapplications

40

BATTERYINNOVATIONROADMAP2030

-

ScopeAndPurposeOfTheTechnicalAnnex

ThisTechnicalAnnextotheEUROBATWhitePaper‘BatteryInnovationRoadmap2.0’providesthereaderwithmorein-depthtechnicalbackgroundonthestate-of-playandinnovationpotentialofthemainstreamlead-,lithium-,nickel-andsodium-basedbatteries,aswellasonpromisingfuturebatterytechnologieswithahorizonupto2030.TheAnnexconsistsoftwomainparts.

Thefirstpartanalysesthestate-of-the-artandpotentialforimprovementofeachidentifiedbatterytechnologyinrelationtotheirintrinsicperformance,safetyandenvironmentalaspects.

Asbatteriesaredesignedtobeusedinparticularapplications,thesecondpartoftheAnnexisevenmoreimportantandanalysesthemainstreambatterytechnologiesusedincriticalapplicationsinsupportoftheobjectivesoftheGreenDeal.InthispartII,thebatteryKPIsareconsideredperapplicationastheinnovationpriorityareasforthedifferentmainstreambatterytechnologiesarestronglylinkedtothis.

BATTERYTECHNOLOGIESANDAPPLICATIONS

PbLiNiNa

LEADBASED

LITHIUMBASED

NICKELBASED

SODIUMBASED

ADVANTAGES

ADVANTAGES

ADVANTAGES

ADVANTAGES

Affordable,provensafe

Highenergydensity,

Longlife,

Relativelyhighenergy

andsustainable

lowweight

reliability

density,lowweight

4EUROBAT

BATTERYINNOVATIONROADMAP2030

IdentifiedBattery

Part1

Technologiesand

theirpotential

ThebatterytechnologiesconsideredinthisWhitePaperhavebeenselectedbecauseoftheirpotentialforfurtherimprovementandtheircontributiontomeetingtheobjectivesoftheEuropeanGreenDealandthenewBatteriesRegulationthatisunderdevelopment.

Thefirstchaptercoverstoday’smainstreambatterytechnologies(lead-,lithium-,nickel-andsodium-based),whilstthesecondchaptercoversthemostpromisingupcomingtechnologiesidentifiedtocomplementtheprogressmadeintheexistingtechnologies.

A.

Mainstreambatterytechnologiesandtheirinnovationpotential

Decadesofmarket-drivenR&Dhasresultedinawidevarietyofcommerciallead-,lithium-,nickel-andsodium-basedbatteryproducts.Thislargevarietyofproductsistheresultofincrementalimprovementsintroducedoverdecadestofitthespecificneedsoftheapplicationsandtheirever-increasingdemands.

Today’smainstreamlead-,lithium-,nickel-andsodium-basedbatterytechnologiesstillhaveinnovationpotentialtocontinueservingfurtherevolvingmarkets.Assuch,theyshouldbeconsideredaskeytechnologiestofurtherreduceCO2emissionsandtomakeEuropelessdependentonenergyandrawmaterialimports,alsoby2030.

Thischapterhighlightstheinnovationsofeachofthevariousmainstreamchemistries.However,itshouldbestressedthatcombiningbatterychemistrieswithinthesameapplicationalsoprovidessynergies,suchasindevelopmentsformild-hybridEVsorinBEVs,wheretheHVlithiumpropulsionbatteryissupportedbytheLVadvancedleadbatterytoensurethefunctionalsafety.

EUROBAT5

BATTERYINNOVATIONROADMAP2030

A.1.Leadbasedbatteries

Pb

State-of-the-art

Theleadbatteryhasbeenthepredominantenergystoragedevicefortheindustrialandautomotivemarketsforover100years.Differentdesignsoflead-basedbatteriesareavailable,withanimportantchoicetobemadebetweenfloodedor‘vented’,requiringmaintenance,ormaintenance-freevalve-regulated(VRLA)batteries.TheycanbeconnectedinlargebatteryarrangementswithoutsophisticatedmanagementsystemsandaredifferentiatedfromtheothertechnologiesbyalowcostperkWhinstalledandlowcostperkWhelectricitythroughput.

Itisoftenoverlookedthattheleadbatteryhascontinuouslyinnovatedin

responsetonewrequirementsintermsoffunctionality,durabilityandcost.The

recentmainstreamintroductionsofabsorptiveglass-mat(AGM)batteries,enhancedfloodedbatteries(EFBs),batterymonitoringsensorsandbatterymanagementsystems(BMS)areobviousexamplesofcontinuousimprovement.

Improvementpotential

Tocompetewithupcomingelectrochemicalstoragetechnologies,thereisaneedtoacceleratethepaceofinnovation.Thiscouldbethroughabetterdynamiccharge-acceptanceatuncompromisedhightemperaturedurabilityorbyimprovingtheenergyandpowerdensitieswithimprovedcycle-life.Specificpowercouldbeimprovedbydevelopingnewadvancedadditivestodecreasetheinternalresistance,whilethecyclelifecouldbelengthenedthroughdesignenhancements,suchascorrosion-resistantlead-alloys.Moreintelligentbatteryoperationmodescouldalsobedeveloped.

Apartfromfundamentalresearchtoimprovetheelectrolyte,thematerialsandthecomponentsused,otherimprovementscanstillbemade.Theseincludematerialinnovationsonsyntheticexpanders,nano-basedcarbonmaterials,newalloycompositionsandimprovedThinPlatePureLead(TPPL).Alsobipolarcelldesignwillbekeydevelopmentsforlead-basedtechnologiestofurtheradvanceinviewoffuturerequirementsinamultitudeofapplications.TPPLandCarbonEnhancedarepromisingcandidatesforincreasedservicelife,PSOCoperationandimprovedpowerdensity.

Theoutstandingfeatureinthisprocessisthattheseimprovementshavebeentailoredtotheparticularapplication.

Environmentalaspects

Occupationalexposuretoleadisnowundercontrolbecausethebatteryindustryhasproactivelytakenmeasurestolimittheexposureofitsemployeestobloodleadcontaminationduringthemanufacturingprocess.Europeshouldallowthemarkettodrivechangeandrecentprogressonleadbatteryresearchshouldnotbediscounted.Thefurtherdevelopmentofleadbatteriesinavarietyofenhancedtechnologieswillserveapplicationsthatcancontributetotheachievementofthezero-emissionstargetsintheEuropeanGreenDeal.

Lead-basedbatterycirculareconomytargets

Recyclingtargetsforleadbatterieswillbemaintainedataveryhighlevel,withefficiencyover90%andrecyclingofactivematerialsat99%,achievingacirculareconomy,whichwillbenefitthewholebatteryvaluechainandimproveEurope’sindependencyonrawmaterialsimportsneededtobuildthebatteries.

6EUROBAT

BATTERYINNOVATIONROADMAP2030

A.2.Lithium-basedbatteries

State-of-the-art

Li

Lithium-ion(Li-ion)isconsideredtheleadinglithiumtechnologyforautomotiveandindustrialapplicationsandwillremainsoin2030.Lithiumiscurrentlydeployedinmass-producedstandardcelltypesindifferentapplications–astrategydrivenbycostandsafetyreasons.Themajorrequirementforhigherenergydensitiestoachieveincreaseddrivingrangeisdirectlylinkedtoe-mobility.Thisresultsinadevelopmentroadmapfor2030thatmainlyconsidersthelithium-basedtechnologiesbasedonmodifiednickelcobaltmanganeseoxide(NMC)materials,fromNMC111toNMC811,withincreasednickelandreducedcobaltcontentincombinationwithhighcapacitiveanode

materialswithcarbon/siliconcomposites.Solidstatetechnologyshouldalsobetargetedtoincreasetheenergydensityandimprovethesafetyaspect.TheLi-iontechnologiesconsideredinthisRoadmapconsistofacombinationofthefollowingavailableanodeandcathodematerials:

Tabulation:SpecificcapacitiesofanodeandcathodematerialsofLi-ionbatteriescoveredinthisRoadmap

Improvementpotential

ThedevelopmentroadmapforLi-ion,Ni-richNMCpositiveelectrodematerialsandnewmaterialsforthenegativeelectrode(e.g.Si/Ccomposite)consideredforfuturedevelopmentare:

?Generation2a:NMC111/100%C

?Generation2b:NMC523-622/100%C

?Generation3a:NMC622/C+Si(5-10%)

?Generation3b:NMC811/Si/Ccomposite

Chart:Generationoflithiummaterialsconsideredforfurtherdevelopmentby2030

EUROBAT7

BATTERYINNOVATIONROADMAP2030

Duetothevarietyofpossiblecombinationsofcathodeandanodematerials,theresultingLi-ionbatteriesshowspecificandindividualperformancecharacteristicssuitablefordifferentkindsofapplications.ThedevelopmentofLi-iontechnologiessuitableforindustrialandautomotiveapplicationsisstillachallengeintermsofmaterialresearchprocess,production,development,recycling,safetyandtransportation.

Requirementsforcathodematerials

?Highspecificenergy(mAh/g)

?Safety

?Stability(cycleandcalendric)

?Highvoltage

?Lowpolarisation

?Lowprice

?Lowcontentofrarematerials(e.g.cobalt)

?LowCO2footprintatproduction

?Environmentallyandethicallyharmless

?Easyprocessing

?Availability

?Highpowercapability

Economicandsafetyrequirements

?Lowprice

?Easyprocessing

?Environmentallysafeandethical

?Operationallysafe

Challengesidentified

?Productionprocesses

?Recyclingprocesses

?Transportation

Environmentalaspects

Inordertoreducetheenvironmentalimpactandimprovingtheavailabilityoflithiumbatterycomponents,astrongpushisexpectedinresearchaimedatreducingthecontentofrarematerials(Cobalt),atresearchingalternativematerials,activatingextractionprocessesenvironmentallysafeandethicallysoundminingandmanufacturing,andalsoadevelopmentoflow-carbonmanufacturingprocesses.

Lithiumbasedbatterycirculareconomytargets

Recyclingtargetsforleadbatterieswillbemaintainedataveryhighlevel,withefficiencyover90%andrecyclingofRecyclingtargetsforlithiumbatterieswillbemaintainedatthecurrentlevelof50%,butactivematerialrecyclingisexpectedtoincreasefrom65%toreach85%by2030.Therecoveryofnickel,cobaltandlithiumwillalsobefullycommerciallyviableinfuture.

8EUROBAT

BATTERYINNOVATIONROADMAP2030

A.3.Nickel-basedbatteries

Ni

State-of-the-art

Nickel-basedbatteriesarethetechnologyofchoiceforapplicationsusedinextremeclimate,cyclingorfastchargingconditions.Differentdesignsareavailable:pocket,sintered,plastic-bonded,nickelfoamandfibreelectrodes.Cellsareprismaticorspiralwound,flooded(or‘vented’)orvalveregulated,thelatteralsobeingmaintenancefree.Thankstodecadesofsafeuseunderthemostextremeoperatingconditionsandcontinuousdevelopment,nickel-cadmiumismostlyusedinspecialandnicheapplications.

Improvementpotential

Usinginnovativematerials,thistechnologycanbefurtherdevelopedforexistingapplicationsandasareplacementsolutionwithitskeyperformancepropertiesinextremeconditionshavingthepotentialforfurtherimprovement.Nickel-basedbatteriesareamongtheelectrochemicalstoragesystemsthatshouldbeconsideredforindustrialapplicationsoverthenextdecade.

Environmentalaspectsandcirculareconomytargets

Recyclingefficiencyshouldincreasefromthecurrent79%(activematerialsat50%)to80-85%(activematerialsat55-60%)by2030toreachabreak-evenbusinessmodel

EUROBAT9

BATTERYINNOVATIONROADMAP2030

A.3.Sodium-basedbatteries

Na

State-of-the-art

Incontrasttootherbatterytypes,high-temperaturebatteriesconsistofliquid-electrodesandasolidelectrolyte,usuallyanion-conducting(e.g.Na+)ceramic.Thesebatteriesrequirerelativelyhighoperatingtemperaturesof>300°Ctokeepthesodium-basedelectrodeintheliquidstateandtoincreasetheconductivityofthesolidelectrolyte.

Commerciallyavailablerepresentativesaresodiumnickelchloride(NaNiCl),alsoknownasthe‘Zebra’battery(ZeroEmissionBatteryResearchActivities),andthesodium-sulfurbattery(NaS).

Sodiumnickelchloridebatteries:Thecathodemainlyconsistsofaporousnickelmatrixasacurrentconductorwithnickelchloride(NiCl2),whichisimpregnatedwithsodiumaluminumchloride(NaAlCl4).Theanodeismadeofsodium.Ceramicβ-aluminumoxideisusedastheseparatorandelectrolyte,butthesodiumionsdonotallowelectronstopassbetweentheanodeandcathode.Theoperatingtemperatureofthistypeofbatteryisbetween270°Cand350°Csothattheelectrodes(activematerial)areintheliquidstate(melted)andtheceramicseparatorachieveshighconductivityforsodiumions.Thespecificenergyofthecellsisapproximately120Wh/kgatanominalvoltageof2.3Vto2.6V.Advantagesoverthesodium-sulfurbatteryaretheinversestructurewithliquidsodiumontheoutside,whichallowstheuseofinexpensiverectangularsteelhousingsinsteadofcylindricalnickelcontainers.Theassemblyissimplifiedinthatthebatterymaterialscanbeusedintheunchargedstateassodiumchlorideandnickel,andthechargedactivematerialsareonlygeneratedinthefirstchargingcycle.Sodiumnickelchloridebatteriesareusedinsmallseriesofelectricvehiclesinfleetsandforstationarystorageapplications.

Sodium-sulfur(NaS)batteries:Thecellsconsistofananodemadeofmoltensodiumandacathodemadeofgraphitefabricsoakedwithliquidsulfurinordertoachieveelectricalconductivity,assulfurisaninsulator.AsinthecaseoftheNaNiClbattery,thesolidelectrolyteβ-aluminumoxideisusedastheelectrolyte,whichbecomesconductiveforNa+ionsaboveatemperatureofapprox.300°C.Theoptimumtemperaturerangeisbetween300°Cand340°C.Duringthedischargeprocess,positivelychargedsodiumionsenterthesolidelectrolytefromtheliquidsodium,releasingelectrons.Thesodiumionsmigratethroughtheelectrolytetothepositiveelectrode,wheretheyformsodiumpolysulphides.Thecellvoltageis2V.Thisprocessisreversedduringcharging.Amajoradvantageofthesodium-sulfurbatteryisthattheinternalresistanceofthecellisalmostindependentofthestateofcharge.Itonlyrisessharplytowardstheendofthechargebecausethereisadecreaseinsodiumionsintheelectrolyte.

Therequiredoperatingtemperatureismaintainedinnormaloperationbythepowerdissipationofthecellsthemselves;instand-byoperationitisachievedbyanadditionalelectricheater,whichincreasesthebattery’sownconsumption.

TheNaSbatteryhasavolumetricenergydensityofabout367Wh/landgravimetricenergydensityof222Wh/kg.Oneadvantageofthisbatteryisthehighcyclestabilityofover4,500cyclesandalongcalendarlifeofover15years.Thetechnologyhasbeencommercialisingsince2002,mainlyforlargescalestoragewithmorethan1MWhofenergy.

NaNiClandNaSbatterieshaveaservicelifeofaround4,500cyclesandanefficiencyof75%to86%.Ifnecessary,thermallossesduetoheatingnecessarytomaintainthecelltemperaturemustbetakenintoaccount,iftherearelongerperiodsoftimebetweencharginganddischarging.Thiscanbeinfluencedwithincertainlimitsthroughacorrespondingeffortinthermalinsulation.

Environmentalandcirculareconomytargets

NaNiClbatteryproductionisrelativelyenergy-intensiveandthereforehasthehighestshareofenvironmentalimpact(dependingontheheatsupplysource).Otherfactorsarethehighdemandfornickelandthecomplexmodularconstruction(insulation).Thenickelcontentinthebatterycanberecovered,whichcanbeusedinthesteelindustry.Theceramiccontentinthecells,aswellasthesaltcollectedintheresultingslag,canbeusedinroadconstruction.Regardingthemanufacturingprocess,theproductionoftheβ-aluminumoxidesolidelectrolyteisconsideredtobeenergy-intensive.NaSbatteriesalsocontainlargeproportionsofsteelandaluminum,whichcanberecycledaccordingly,leadingtoareductioninthepossibleenvironmentalimpact.

10EUROBAT

BATTERYINNOVATIONROADMAP2030

B.

Futurebatterytechnologiesandtheirpotential

Intheframeoffurtherimprovementsinperformancerequirementsofbatteriesinreallifeapplicationsanddrivenbydurability,safety,sustainabilityandaffordability,industryexpertshavereachedconsensusonwhichpromisingfuturetechnologiestoconsiderinthecurrentroadmap.Withsustainabilityasakeydriverwiththepurposeofproducingbatteriesatthelowestpossibleenvironmentalimpact,materialsthathavebeenobtainedinfullrespectofsocialandecologicalstandards,arelonglastingandsafe,andthatcanberepaired,reusedorpotentiallyrepurposedshouldbeused.Inthissensetheessentialelectrochemicalstoragesystemsidentifiedarelistedhereunder.

B.1.Leadbipolarbatterytechnology

Whilebipolarandmonopolardesignssharethesamelead-basedchemistry,theydifferinthatinbipolarbatteries,thecellsarestackedinasandwichconstructionsothatthenegativeplateofonecellbecomesthepositiveplateofthenextcell.Thecellsareseparatedfromeachotherbythebipolarplate,whichallowseachcelltooperateinisolationfromitsneighbour.Stackingthesecellsnexttooneanother(figurehereunder)allowsthepotentialofthebatterytobebuiltupin2Vincrements.Sincethecellwallbecomestheconnectionelementbetweencells,bipolarplateshaveashortercurrentpathandalargersurfaceareacomparedtoconnectionsinconventionalcells.Thisconstructionreducesthepowerlossthatisnormallycausedbytheinternalresistanceofthecells.Ateachendofthestack,singleplatesactasthe?nalanodeandcathode.Thissimplerconstructionleadstoreducedweightsincetherearefewerplatesandbusbarsarenotneededtojoincellstogether.Thenetresultisabatterydesignwithhigherpowerthanconventionalmonopolarlead-basedbatteries.

Figure:Bipolardesign-thecellsarestackedinasandwichconstruction

Untilrecently,themainproblemlimitingthecommercialisationofbipolarlead-acidbatterieswastheavailabilityofalightweight,inexpensiveandcorrosionresistantmaterialforthebipolarplate,andthetechnologytoproperlysealeachcellagainstelectrolyteleakage.

Architecturaladvantagesare:

?Directcurrentpath=lowimpedance

?Uniformcurrentdensity=highmaterialutilisation

?Thinactivematerialandseparator=highpower

?Pb-Bipolartechnology=increasedenergydensity:50–63Wh/kg

EUROBAT11

BATTERYINNOVATIONROADMAP2030

B.2.Sodium-ionroomtemperaturebatteries

Incomparisontothestate-of-the-arthightemperaturesodiumbatteries,theupcomingnewsodium-ionbatterytechnologyisoperatingatroomtemperature.Thesodium-ionbatteryhasasimilarworkingprincipletotheLi-ionbattery.Sodiumionsalsoshuttlebetweenthecathodeandtheanodetostoreandreleaseenergy.AssodiumresourcesarecheapandwidelydistributedandconsideringthetechnologicalsimilaritieswithexistingLi-ionbatteries,theindustrialisationprocessofsodium-ionbatterieswillbeaccelerated.

Forcathodematerials,themostimportantpartofsodium-ionbatteries,Prussianblueanalogue,layeredmetaloxides,andNASICON(sodium(Na)SuperIonicConductor),eachhasitsownadvantagesindifferentaspects.

Basedonpotentialapplicationscenarios,higherenergydensity,longercyclelifeandbetterlowtemperatureperformancearethemostcriticalindicators.Intotal,thecostandsafetyadvantagesofsodiumbatterieswillgraduallygaininprominence.Therefore,itislikelythatsodium-ionbatterieswillbeusedastractionbatteriesintwo-wheeledvehicles,suchase-scooters,12Vstarterapplications,A0andA00passengervehiclesforA-levelEVcharging,andelectricalenergystorage(EES),asaneffectivesupplementtoLi-ionbatteries.

Thespecificcapacitiesofanodeandcathodematerialsare:

Anode:

?C:300-500mAh/g

?Sn:500-1,000mAh/g

Cathode:

?PrussianBlueAnalogue:120-160mAh/g

?LayeredMetalOxide:100-180mAh/g

?NASICON:100-140mAh/g

Sodium-basedbatterycirculareconomytargets

Recyclingtargetsforsodium-ionbatterieswillbemaintainedatthecurrentlevelof50%,butactivematerialrecyclingisexpectedtoincreasefrom50%to90%by2030.

Generationsofsodiummaterialsconsideredforfurtherdevelopmentby2030are:

State-of-the-art

NaS,NaNiCl

>2023

Na-ion(RT)

>2025

HighEnergyDensityNa-ion(RT)

>2030

AllSolidState

Sodiumbasedtechnologies-keyperformanceparametersforstate-of-the-artin2023andtargetsfor2030:

Sodium-ion2023

Sodium-ion2030

RecyclingRate(%)

50

90

CalendricLife(years)

15

30

EnergyThroughput(FCE)

4000

6,000-12,000

FastRechargeTime(min)

30

5

VolumetricPowerDensity(W/l)

500

600-850

GravimetricPowerDensity(W/kg)

300

380-700

VolumetricEnergyDensity(Wh/l)

310

350-700

GravimetricEnergyDensity(Wh/kg)

160

200-450

12EUROBAT

BATTERYINNOVATIONROADMAP2030

B.3.PostLi-ionbatterytechnologies

Inexpensiveandenvironmentallyfriendlymetalssuchassodiumandpolyvalentlightmetalsshouldonedayreplacelithiumbatterytechnologies.Amajorchallenge,however,isthedevelopmentofdurableandstableelectrodeswithhighenergydensityand,atthesametime,fastcharginganddischargingrates.

LithiumTechnologyRoadmap

Figures:LithiumtechnologyRoadmap(>2025):Gen.3.advancedLi-Ion;Gen.4.Solid-state;Gen.5post-Li-ion

Lithiumall-solid-state(Gen.4)

Solidstatebatteriesuseanelectrolytemadeofsolidmaterialinsteadoftheusualliquidelectrolyte.Theelectrodesarealsomadeofsolidmaterial.Withsolidstatebatteries,thereisthepossibilitythatpartofthesolidelectrolytecanbeincorporatedintotheelectrodes.Forexample,lithiummetalanodescanalsobeused,whichfurtherimproveperformance.Themainadvantagesoffuturesolidstatebatteriesarethattheenergydensityofthecellswillincreasesigni?cantlyinthefutureandtheriskof?rewillalsodecreaseduetothelesspronouncedflammabilityo

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論