




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
-
TECHNICALANNEX
PbLiNiNa
Contents
SCOPEANDPURPOSEOFTHETECHNICALANNEX
4
PARTI:IDENTIFIEDBATTERYTECHNOLOGIESANDTHEIRPOTENTIAL
5
A.MAINSTREAMBATTERYTECHNOLOGIESANDTHEIRINNOVATIONPOTENTIAL
5
A.1.Lead-basedbatteries
6
A.2.Lithium-basedbatteries
7
A.3.Nickel-basedbatteries
9
A.4.Sodium-basedbatteries
10
B.FUTUREBATTERYTECHNOLOGIESANDTHEIRPOTENTIAL
11
PARTII:BATTERYEND-USERAPPLICATIONR&DFOCUSAREA
16
A.R&DAREA-AUTOMOTIVEMOBILITY
16
A.1.Automotive12Vauxiliarybatteries
17
A.2.Automotive12VStart-Lighting-Ignitionbatteries(SLIbatteries)
19
A.3.Heavycommercialvehiclestand-bybatteries
20
A.4.AutomotiveHybridElectricVehiclepropulsionbatteries(HEVs)
21
A.5.AutomotiveBatteryElectricVehicles(BEVs)
22
B.R&DAREA-MOTIVEPOWERMATERIALHANDLINGANDLOGISTICSAPPLICATIONS
24
C.R&DAREA-MOTIVEPOWEROFF-ROADTRANSPORTATION
25
C.1.Batteriesinoff-roadindustrialvehicles
25
C.2.Batteriesinrailwayapplications
26
C.3.BatteriesinMarineapplications
27
C.4.BatteriesinAviationapplications
30
D.R&DAREA:BATTERIESFORSTATIONARYENERGYSTORAGE
32
D.1.Batteriesforuninterruptedpowersupply(UPS)
32
D.2.BatteriesforTelecom(TLC)
34
D.3.Batteriesforresidentialandcommercialenergystoragebehindthemeter
36
D.4.Batteriesforutilitygrid-scalestorage(large-scaleESS–infrontofthemeter)
38
D.5.Batteriesinoff-gridapplications
40
BATTERYINNOVATIONROADMAP2030
-
ScopeAndPurposeOfTheTechnicalAnnex
ThisTechnicalAnnextotheEUROBATWhitePaper‘BatteryInnovationRoadmap2.0’providesthereaderwithmorein-depthtechnicalbackgroundonthestate-of-playandinnovationpotentialofthemainstreamlead-,lithium-,nickel-andsodium-basedbatteries,aswellasonpromisingfuturebatterytechnologieswithahorizonupto2030.TheAnnexconsistsoftwomainparts.
Thefirstpartanalysesthestate-of-the-artandpotentialforimprovementofeachidentifiedbatterytechnologyinrelationtotheirintrinsicperformance,safetyandenvironmentalaspects.
Asbatteriesaredesignedtobeusedinparticularapplications,thesecondpartoftheAnnexisevenmoreimportantandanalysesthemainstreambatterytechnologiesusedincriticalapplicationsinsupportoftheobjectivesoftheGreenDeal.InthispartII,thebatteryKPIsareconsideredperapplicationastheinnovationpriorityareasforthedifferentmainstreambatterytechnologiesarestronglylinkedtothis.
BATTERYTECHNOLOGIESANDAPPLICATIONS
PbLiNiNa
LEADBASED
LITHIUMBASED
NICKELBASED
SODIUMBASED
ADVANTAGES
ADVANTAGES
ADVANTAGES
ADVANTAGES
Affordable,provensafe
Highenergydensity,
Longlife,
Relativelyhighenergy
andsustainable
lowweight
reliability
density,lowweight
十
4EUROBAT
BATTERYINNOVATIONROADMAP2030
IdentifiedBattery
Part1
Technologiesand
theirpotential
ThebatterytechnologiesconsideredinthisWhitePaperhavebeenselectedbecauseoftheirpotentialforfurtherimprovementandtheircontributiontomeetingtheobjectivesoftheEuropeanGreenDealandthenewBatteriesRegulationthatisunderdevelopment.
Thefirstchaptercoverstoday’smainstreambatterytechnologies(lead-,lithium-,nickel-andsodium-based),whilstthesecondchaptercoversthemostpromisingupcomingtechnologiesidentifiedtocomplementtheprogressmadeintheexistingtechnologies.
A.
Mainstreambatterytechnologiesandtheirinnovationpotential
Decadesofmarket-drivenR&Dhasresultedinawidevarietyofcommerciallead-,lithium-,nickel-andsodium-basedbatteryproducts.Thislargevarietyofproductsistheresultofincrementalimprovementsintroducedoverdecadestofitthespecificneedsoftheapplicationsandtheirever-increasingdemands.
Today’smainstreamlead-,lithium-,nickel-andsodium-basedbatterytechnologiesstillhaveinnovationpotentialtocontinueservingfurtherevolvingmarkets.Assuch,theyshouldbeconsideredaskeytechnologiestofurtherreduceCO2emissionsandtomakeEuropelessdependentonenergyandrawmaterialimports,alsoby2030.
Thischapterhighlightstheinnovationsofeachofthevariousmainstreamchemistries.However,itshouldbestressedthatcombiningbatterychemistrieswithinthesameapplicationalsoprovidessynergies,suchasindevelopmentsformild-hybridEVsorinBEVs,wheretheHVlithiumpropulsionbatteryissupportedbytheLVadvancedleadbatterytoensurethefunctionalsafety.
十
EUROBAT5
BATTERYINNOVATIONROADMAP2030
A.1.Leadbasedbatteries
Pb
State-of-the-art
Theleadbatteryhasbeenthepredominantenergystoragedevicefortheindustrialandautomotivemarketsforover100years.Differentdesignsoflead-basedbatteriesareavailable,withanimportantchoicetobemadebetweenfloodedor‘vented’,requiringmaintenance,ormaintenance-freevalve-regulated(VRLA)batteries.TheycanbeconnectedinlargebatteryarrangementswithoutsophisticatedmanagementsystemsandaredifferentiatedfromtheothertechnologiesbyalowcostperkWhinstalledandlowcostperkWhelectricitythroughput.
Itisoftenoverlookedthattheleadbatteryhascontinuouslyinnovatedin
responsetonewrequirementsintermsoffunctionality,durabilityandcost.The
recentmainstreamintroductionsofabsorptiveglass-mat(AGM)batteries,enhancedfloodedbatteries(EFBs),batterymonitoringsensorsandbatterymanagementsystems(BMS)areobviousexamplesofcontinuousimprovement.
Improvementpotential
Tocompetewithupcomingelectrochemicalstoragetechnologies,thereisaneedtoacceleratethepaceofinnovation.Thiscouldbethroughabetterdynamiccharge-acceptanceatuncompromisedhightemperaturedurabilityorbyimprovingtheenergyandpowerdensitieswithimprovedcycle-life.Specificpowercouldbeimprovedbydevelopingnewadvancedadditivestodecreasetheinternalresistance,whilethecyclelifecouldbelengthenedthroughdesignenhancements,suchascorrosion-resistantlead-alloys.Moreintelligentbatteryoperationmodescouldalsobedeveloped.
Apartfromfundamentalresearchtoimprovetheelectrolyte,thematerialsandthecomponentsused,otherimprovementscanstillbemade.Theseincludematerialinnovationsonsyntheticexpanders,nano-basedcarbonmaterials,newalloycompositionsandimprovedThinPlatePureLead(TPPL).Alsobipolarcelldesignwillbekeydevelopmentsforlead-basedtechnologiestofurtheradvanceinviewoffuturerequirementsinamultitudeofapplications.TPPLandCarbonEnhancedarepromisingcandidatesforincreasedservicelife,PSOCoperationandimprovedpowerdensity.
Theoutstandingfeatureinthisprocessisthattheseimprovementshavebeentailoredtotheparticularapplication.
Environmentalaspects
Occupationalexposuretoleadisnowundercontrolbecausethebatteryindustryhasproactivelytakenmeasurestolimittheexposureofitsemployeestobloodleadcontaminationduringthemanufacturingprocess.Europeshouldallowthemarkettodrivechangeandrecentprogressonleadbatteryresearchshouldnotbediscounted.Thefurtherdevelopmentofleadbatteriesinavarietyofenhancedtechnologieswillserveapplicationsthatcancontributetotheachievementofthezero-emissionstargetsintheEuropeanGreenDeal.
Lead-basedbatterycirculareconomytargets
Recyclingtargetsforleadbatterieswillbemaintainedataveryhighlevel,withefficiencyover90%andrecyclingofactivematerialsat99%,achievingacirculareconomy,whichwillbenefitthewholebatteryvaluechainandimproveEurope’sindependencyonrawmaterialsimportsneededtobuildthebatteries.
十
6EUROBAT
BATTERYINNOVATIONROADMAP2030
A.2.Lithium-basedbatteries
State-of-the-art
Li
Lithium-ion(Li-ion)isconsideredtheleadinglithiumtechnologyforautomotiveandindustrialapplicationsandwillremainsoin2030.Lithiumiscurrentlydeployedinmass-producedstandardcelltypesindifferentapplications–astrategydrivenbycostandsafetyreasons.Themajorrequirementforhigherenergydensitiestoachieveincreaseddrivingrangeisdirectlylinkedtoe-mobility.Thisresultsinadevelopmentroadmapfor2030thatmainlyconsidersthelithium-basedtechnologiesbasedonmodifiednickelcobaltmanganeseoxide(NMC)materials,fromNMC111toNMC811,withincreasednickelandreducedcobaltcontentincombinationwithhighcapacitiveanode
materialswithcarbon/siliconcomposites.Solidstatetechnologyshouldalsobetargetedtoincreasetheenergydensityandimprovethesafetyaspect.TheLi-iontechnologiesconsideredinthisRoadmapconsistofacombinationofthefollowingavailableanodeandcathodematerials:
Tabulation:SpecificcapacitiesofanodeandcathodematerialsofLi-ionbatteriescoveredinthisRoadmap
Improvementpotential
ThedevelopmentroadmapforLi-ion,Ni-richNMCpositiveelectrodematerialsandnewmaterialsforthenegativeelectrode(e.g.Si/Ccomposite)consideredforfuturedevelopmentare:
?Generation2a:NMC111/100%C
?Generation2b:NMC523-622/100%C
?Generation3a:NMC622/C+Si(5-10%)
?Generation3b:NMC811/Si/Ccomposite
Chart:Generationoflithiummaterialsconsideredforfurtherdevelopmentby2030
十
EUROBAT7
BATTERYINNOVATIONROADMAP2030
Duetothevarietyofpossiblecombinationsofcathodeandanodematerials,theresultingLi-ionbatteriesshowspecificandindividualperformancecharacteristicssuitablefordifferentkindsofapplications.ThedevelopmentofLi-iontechnologiessuitableforindustrialandautomotiveapplicationsisstillachallengeintermsofmaterialresearchprocess,production,development,recycling,safetyandtransportation.
Requirementsforcathodematerials
?Highspecificenergy(mAh/g)
?Safety
?Stability(cycleandcalendric)
?Highvoltage
?Lowpolarisation
?Lowprice
?Lowcontentofrarematerials(e.g.cobalt)
?LowCO2footprintatproduction
?Environmentallyandethicallyharmless
?Easyprocessing
?Availability
?Highpowercapability
Economicandsafetyrequirements
?Lowprice
?Easyprocessing
?Environmentallysafeandethical
?Operationallysafe
Challengesidentified
?Productionprocesses
?Recyclingprocesses
?Transportation
Environmentalaspects
Inordertoreducetheenvironmentalimpactandimprovingtheavailabilityoflithiumbatterycomponents,astrongpushisexpectedinresearchaimedatreducingthecontentofrarematerials(Cobalt),atresearchingalternativematerials,activatingextractionprocessesenvironmentallysafeandethicallysoundminingandmanufacturing,andalsoadevelopmentoflow-carbonmanufacturingprocesses.
Lithiumbasedbatterycirculareconomytargets
Recyclingtargetsforleadbatterieswillbemaintainedataveryhighlevel,withefficiencyover90%andrecyclingofRecyclingtargetsforlithiumbatterieswillbemaintainedatthecurrentlevelof50%,butactivematerialrecyclingisexpectedtoincreasefrom65%toreach85%by2030.Therecoveryofnickel,cobaltandlithiumwillalsobefullycommerciallyviableinfuture.
十
8EUROBAT
BATTERYINNOVATIONROADMAP2030
A.3.Nickel-basedbatteries
Ni
State-of-the-art
Nickel-basedbatteriesarethetechnologyofchoiceforapplicationsusedinextremeclimate,cyclingorfastchargingconditions.Differentdesignsareavailable:pocket,sintered,plastic-bonded,nickelfoamandfibreelectrodes.Cellsareprismaticorspiralwound,flooded(or‘vented’)orvalveregulated,thelatteralsobeingmaintenancefree.Thankstodecadesofsafeuseunderthemostextremeoperatingconditionsandcontinuousdevelopment,nickel-cadmiumismostlyusedinspecialandnicheapplications.
Improvementpotential
Usinginnovativematerials,thistechnologycanbefurtherdevelopedforexistingapplicationsandasareplacementsolutionwithitskeyperformancepropertiesinextremeconditionshavingthepotentialforfurtherimprovement.Nickel-basedbatteriesareamongtheelectrochemicalstoragesystemsthatshouldbeconsideredforindustrialapplicationsoverthenextdecade.
Environmentalaspectsandcirculareconomytargets
Recyclingefficiencyshouldincreasefromthecurrent79%(activematerialsat50%)to80-85%(activematerialsat55-60%)by2030toreachabreak-evenbusinessmodel
十
EUROBAT9
BATTERYINNOVATIONROADMAP2030
A.3.Sodium-basedbatteries
Na
State-of-the-art
Incontrasttootherbatterytypes,high-temperaturebatteriesconsistofliquid-electrodesandasolidelectrolyte,usuallyanion-conducting(e.g.Na+)ceramic.Thesebatteriesrequirerelativelyhighoperatingtemperaturesof>300°Ctokeepthesodium-basedelectrodeintheliquidstateandtoincreasetheconductivityofthesolidelectrolyte.
Commerciallyavailablerepresentativesaresodiumnickelchloride(NaNiCl),alsoknownasthe‘Zebra’battery(ZeroEmissionBatteryResearchActivities),andthesodium-sulfurbattery(NaS).
Sodiumnickelchloridebatteries:Thecathodemainlyconsistsofaporousnickelmatrixasacurrentconductorwithnickelchloride(NiCl2),whichisimpregnatedwithsodiumaluminumchloride(NaAlCl4).Theanodeismadeofsodium.Ceramicβ-aluminumoxideisusedastheseparatorandelectrolyte,butthesodiumionsdonotallowelectronstopassbetweentheanodeandcathode.Theoperatingtemperatureofthistypeofbatteryisbetween270°Cand350°Csothattheelectrodes(activematerial)areintheliquidstate(melted)andtheceramicseparatorachieveshighconductivityforsodiumions.Thespecificenergyofthecellsisapproximately120Wh/kgatanominalvoltageof2.3Vto2.6V.Advantagesoverthesodium-sulfurbatteryaretheinversestructurewithliquidsodiumontheoutside,whichallowstheuseofinexpensiverectangularsteelhousingsinsteadofcylindricalnickelcontainers.Theassemblyissimplifiedinthatthebatterymaterialscanbeusedintheunchargedstateassodiumchlorideandnickel,andthechargedactivematerialsareonlygeneratedinthefirstchargingcycle.Sodiumnickelchloridebatteriesareusedinsmallseriesofelectricvehiclesinfleetsandforstationarystorageapplications.
Sodium-sulfur(NaS)batteries:Thecellsconsistofananodemadeofmoltensodiumandacathodemadeofgraphitefabricsoakedwithliquidsulfurinordertoachieveelectricalconductivity,assulfurisaninsulator.AsinthecaseoftheNaNiClbattery,thesolidelectrolyteβ-aluminumoxideisusedastheelectrolyte,whichbecomesconductiveforNa+ionsaboveatemperatureofapprox.300°C.Theoptimumtemperaturerangeisbetween300°Cand340°C.Duringthedischargeprocess,positivelychargedsodiumionsenterthesolidelectrolytefromtheliquidsodium,releasingelectrons.Thesodiumionsmigratethroughtheelectrolytetothepositiveelectrode,wheretheyformsodiumpolysulphides.Thecellvoltageis2V.Thisprocessisreversedduringcharging.Amajoradvantageofthesodium-sulfurbatteryisthattheinternalresistanceofthecellisalmostindependentofthestateofcharge.Itonlyrisessharplytowardstheendofthechargebecausethereisadecreaseinsodiumionsintheelectrolyte.
Therequiredoperatingtemperatureismaintainedinnormaloperationbythepowerdissipationofthecellsthemselves;instand-byoperationitisachievedbyanadditionalelectricheater,whichincreasesthebattery’sownconsumption.
TheNaSbatteryhasavolumetricenergydensityofabout367Wh/landgravimetricenergydensityof222Wh/kg.Oneadvantageofthisbatteryisthehighcyclestabilityofover4,500cyclesandalongcalendarlifeofover15years.Thetechnologyhasbeencommercialisingsince2002,mainlyforlargescalestoragewithmorethan1MWhofenergy.
NaNiClandNaSbatterieshaveaservicelifeofaround4,500cyclesandanefficiencyof75%to86%.Ifnecessary,thermallossesduetoheatingnecessarytomaintainthecelltemperaturemustbetakenintoaccount,iftherearelongerperiodsoftimebetweencharginganddischarging.Thiscanbeinfluencedwithincertainlimitsthroughacorrespondingeffortinthermalinsulation.
Environmentalandcirculareconomytargets
NaNiClbatteryproductionisrelativelyenergy-intensiveandthereforehasthehighestshareofenvironmentalimpact(dependingontheheatsupplysource).Otherfactorsarethehighdemandfornickelandthecomplexmodularconstruction(insulation).Thenickelcontentinthebatterycanberecovered,whichcanbeusedinthesteelindustry.Theceramiccontentinthecells,aswellasthesaltcollectedintheresultingslag,canbeusedinroadconstruction.Regardingthemanufacturingprocess,theproductionoftheβ-aluminumoxidesolidelectrolyteisconsideredtobeenergy-intensive.NaSbatteriesalsocontainlargeproportionsofsteelandaluminum,whichcanberecycledaccordingly,leadingtoareductioninthepossibleenvironmentalimpact.
十
10EUROBAT
BATTERYINNOVATIONROADMAP2030
B.
Futurebatterytechnologiesandtheirpotential
Intheframeoffurtherimprovementsinperformancerequirementsofbatteriesinreallifeapplicationsanddrivenbydurability,safety,sustainabilityandaffordability,industryexpertshavereachedconsensusonwhichpromisingfuturetechnologiestoconsiderinthecurrentroadmap.Withsustainabilityasakeydriverwiththepurposeofproducingbatteriesatthelowestpossibleenvironmentalimpact,materialsthathavebeenobtainedinfullrespectofsocialandecologicalstandards,arelonglastingandsafe,andthatcanberepaired,reusedorpotentiallyrepurposedshouldbeused.Inthissensetheessentialelectrochemicalstoragesystemsidentifiedarelistedhereunder.
B.1.Leadbipolarbatterytechnology
Whilebipolarandmonopolardesignssharethesamelead-basedchemistry,theydifferinthatinbipolarbatteries,thecellsarestackedinasandwichconstructionsothatthenegativeplateofonecellbecomesthepositiveplateofthenextcell.Thecellsareseparatedfromeachotherbythebipolarplate,whichallowseachcelltooperateinisolationfromitsneighbour.Stackingthesecellsnexttooneanother(figurehereunder)allowsthepotentialofthebatterytobebuiltupin2Vincrements.Sincethecellwallbecomestheconnectionelementbetweencells,bipolarplateshaveashortercurrentpathandalargersurfaceareacomparedtoconnectionsinconventionalcells.Thisconstructionreducesthepowerlossthatisnormallycausedbytheinternalresistanceofthecells.Ateachendofthestack,singleplatesactasthe?nalanodeandcathode.Thissimplerconstructionleadstoreducedweightsincetherearefewerplatesandbusbarsarenotneededtojoincellstogether.Thenetresultisabatterydesignwithhigherpowerthanconventionalmonopolarlead-basedbatteries.
Figure:Bipolardesign-thecellsarestackedinasandwichconstruction
Untilrecently,themainproblemlimitingthecommercialisationofbipolarlead-acidbatterieswastheavailabilityofalightweight,inexpensiveandcorrosionresistantmaterialforthebipolarplate,andthetechnologytoproperlysealeachcellagainstelectrolyteleakage.
Architecturaladvantagesare:
?Directcurrentpath=lowimpedance
?Uniformcurrentdensity=highmaterialutilisation
?Thinactivematerialandseparator=highpower
?Pb-Bipolartechnology=increasedenergydensity:50–63Wh/kg
十
EUROBAT11
BATTERYINNOVATIONROADMAP2030
B.2.Sodium-ionroomtemperaturebatteries
Incomparisontothestate-of-the-arthightemperaturesodiumbatteries,theupcomingnewsodium-ionbatterytechnologyisoperatingatroomtemperature.Thesodium-ionbatteryhasasimilarworkingprincipletotheLi-ionbattery.Sodiumionsalsoshuttlebetweenthecathodeandtheanodetostoreandreleaseenergy.AssodiumresourcesarecheapandwidelydistributedandconsideringthetechnologicalsimilaritieswithexistingLi-ionbatteries,theindustrialisationprocessofsodium-ionbatterieswillbeaccelerated.
Forcathodematerials,themostimportantpartofsodium-ionbatteries,Prussianblueanalogue,layeredmetaloxides,andNASICON(sodium(Na)SuperIonicConductor),eachhasitsownadvantagesindifferentaspects.
Basedonpotentialapplicationscenarios,higherenergydensity,longercyclelifeandbetterlowtemperatureperformancearethemostcriticalindicators.Intotal,thecostandsafetyadvantagesofsodiumbatterieswillgraduallygaininprominence.Therefore,itislikelythatsodium-ionbatterieswillbeusedastractionbatteriesintwo-wheeledvehicles,suchase-scooters,12Vstarterapplications,A0andA00passengervehiclesforA-levelEVcharging,andelectricalenergystorage(EES),asaneffectivesupplementtoLi-ionbatteries.
Thespecificcapacitiesofanodeandcathodematerialsare:
Anode:
?C:300-500mAh/g
?Sn:500-1,000mAh/g
Cathode:
?PrussianBlueAnalogue:120-160mAh/g
?LayeredMetalOxide:100-180mAh/g
?NASICON:100-140mAh/g
Sodium-basedbatterycirculareconomytargets
Recyclingtargetsforsodium-ionbatterieswillbemaintainedatthecurrentlevelof50%,butactivematerialrecyclingisexpectedtoincreasefrom50%to90%by2030.
Generationsofsodiummaterialsconsideredforfurtherdevelopmentby2030are:
State-of-the-art
NaS,NaNiCl
>2023
Na-ion(RT)
>2025
HighEnergyDensityNa-ion(RT)
>2030
AllSolidState
Sodiumbasedtechnologies-keyperformanceparametersforstate-of-the-artin2023andtargetsfor2030:
Sodium-ion2023
Sodium-ion2030
RecyclingRate(%)
50
90
CalendricLife(years)
15
30
EnergyThroughput(FCE)
4000
6,000-12,000
FastRechargeTime(min)
30
5
VolumetricPowerDensity(W/l)
500
600-850
GravimetricPowerDensity(W/kg)
300
380-700
VolumetricEnergyDensity(Wh/l)
310
350-700
GravimetricEnergyDensity(Wh/kg)
160
200-450
十
12EUROBAT
BATTERYINNOVATIONROADMAP2030
B.3.PostLi-ionbatterytechnologies
Inexpensiveandenvironmentallyfriendlymetalssuchassodiumandpolyvalentlightmetalsshouldonedayreplacelithiumbatterytechnologies.Amajorchallenge,however,isthedevelopmentofdurableandstableelectrodeswithhighenergydensityand,atthesametime,fastcharginganddischargingrates.
LithiumTechnologyRoadmap
Figures:LithiumtechnologyRoadmap(>2025):Gen.3.advancedLi-Ion;Gen.4.Solid-state;Gen.5post-Li-ion
Lithiumall-solid-state(Gen.4)
Solidstatebatteriesuseanelectrolytemadeofsolidmaterialinsteadoftheusualliquidelectrolyte.Theelectrodesarealsomadeofsolidmaterial.Withsolidstatebatteries,thereisthepossibilitythatpartofthesolidelectrolytecanbeincorporatedintotheelectrodes.Forexample,lithiummetalanodescanalsobeused,whichfurtherimproveperformance.Themainadvantagesoffuturesolidstatebatteriesarethattheenergydensityofthecellswillincreasesigni?cantlyinthefutureandtheriskof?rewillalsodecreaseduetothelesspronouncedflammabilityo
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 出租責(zé)任合同范本
- 買(mǎi)賣(mài)合同和定制合同范本
- 傭金類(lèi)合同范本
- 電氣控制PLC習(xí)題(含答案)
- 廠房檢查合同范本
- 上海旅游心得體會(huì)
- 三年級(jí)第一學(xué)期語(yǔ)文教學(xué)計(jì)劃
- 三八婦女節(jié)工會(huì)活動(dòng)策劃方案
- 亞克力板材合同范本
- 廠房帶看合同范本
- 好習(xí)慣成就好人生
- 大學(xué)物理馬文蔚版PPT
- 內(nèi)蒙古自治區(qū)高層建筑工程結(jié)構(gòu)抗震基本參數(shù)表(2022年版)
- FZ/T 07010-2021綠色設(shè)計(jì)產(chǎn)品評(píng)價(jià)技術(shù)規(guī)范針織服裝
- 2023年北京市中學(xué)生數(shù)學(xué)競(jìng)賽高一年級(jí)復(fù)賽試題及解答
- 乙?;蚁┩p烯酮;二乙烯酮;雙乙烯酮)的理化性質(zhì)及危險(xiǎn)特性表
- 酒店機(jī)房巡視簽到表
- API-650-1鋼制焊接石油儲(chǔ)罐
- 鼠疫演練腳本
- 變壓器試驗(yàn)精品課件
- 危險(xiǎn)化學(xué)品從業(yè)單位安全生產(chǎn)標(biāo)準(zhǔn)化宣貫
評(píng)論
0/150
提交評(píng)論