信陽航空職業(yè)學院《排版設計》2023-2024學年第二學期期末試卷_第1頁
信陽航空職業(yè)學院《排版設計》2023-2024學年第二學期期末試卷_第2頁
信陽航空職業(yè)學院《排版設計》2023-2024學年第二學期期末試卷_第3頁
信陽航空職業(yè)學院《排版設計》2023-2024學年第二學期期末試卷_第4頁
信陽航空職業(yè)學院《排版設計》2023-2024學年第二學期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁信陽航空職業(yè)學院

《排版設計》2023-2024學年第二學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、假設要開發(fā)一個能夠?qū)χ讣y進行識別和認證的計算機視覺系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識別中具有較高的準確性?()A.細節(jié)點提取B.方向場提取C.紋理特征提取D.以上都是2、計算機視覺在衛(wèi)星遙感圖像分析中的應用可以幫助監(jiān)測地球環(huán)境和資源。假設要通過衛(wèi)星圖像分析森林的覆蓋面積變化。以下關于計算機視覺在衛(wèi)星遙感中的描述,哪一項是不準確的?()A.可以通過圖像分類和分割技術區(qū)分森林、草地和建筑物等不同地物類型B.能夠?qū)Χ鄷r相的衛(wèi)星圖像進行比較,監(jiān)測森林的生長和砍伐情況C.計算機視覺在衛(wèi)星遙感中的應用不受衛(wèi)星圖像的分辨率和光譜信息的限制D.可以結(jié)合地理信息系統(tǒng)(GIS)數(shù)據(jù),進行更深入的空間分析和決策支持3、計算機視覺在安防監(jiān)控領域有廣泛應用。假設要通過監(jiān)控攝像頭實時檢測人群中的異常行為,以下關于實時性和準確性的平衡,哪一項是最為關鍵的?()A.優(yōu)先保證實時性,即使準確性略有降低B.優(yōu)先保證準確性,允許一定的延遲C.不考慮實時性和準確性,只要能檢測出異常行為即可D.完全無法平衡實時性和準確性,只能根據(jù)具體情況選擇其一4、計算機視覺中的目標跟蹤是指在視頻序列中持續(xù)跟蹤特定目標。假設要跟蹤一個在復雜場景中運動的人物,以下關于目標跟蹤算法的描述,正確的是:()A.基于卡爾曼濾波的跟蹤算法能夠準確預測目標的運動軌跡,但對目標外觀變化適應性差B.基于粒子濾波的跟蹤算法計算復雜度低,適用于實時跟蹤要求高的場景C.基于深度學習的跟蹤算法需要大量的訓練數(shù)據(jù),并且在目標被遮擋時容易丟失D.目標跟蹤算法只要在初始幀中準確檢測到目標,就能夠在后續(xù)幀中一直保持跟蹤的準確性5、在計算機視覺的目標跟蹤任務中,持續(xù)跟蹤視頻中的特定目標。假設要跟蹤一個在人群中行走的人,以下關于目標跟蹤方法的描述,哪一項是不正確的?()A.基于濾波的方法,如卡爾曼濾波和粒子濾波,可以預測目標的位置和狀態(tài)B.基于深度學習的方法能夠?qū)W習目標的外觀特征,提高跟蹤的準確性和魯棒性C.目標跟蹤過程中,目標的外觀變化、遮擋和背景干擾等因素不會對跟蹤結(jié)果產(chǎn)生影響D.結(jié)合多種特征和算法的融合跟蹤方法,可以綜合利用不同方法的優(yōu)勢,提高跟蹤性能6、在計算機視覺的醫(yī)學圖像分析中,例如對腫瘤的檢測和分割。假設醫(yī)學圖像的質(zhì)量較差,存在噪聲和偽影,以下哪種預處理方法可能有助于提高后續(xù)分析的準確性?()A.圖像平滑B.圖像銳化C.圖像二值化D.圖像翻轉(zhuǎn)7、在圖像配準任務中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設我們要將一張衛(wèi)星圖像與一張航拍圖像進行配準,以下哪個因素對于配準的準確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲8、在計算機視覺的圖像生成任務中,除了生成新的圖像,還可以對已有圖像進行風格轉(zhuǎn)換。假設我們要將一張照片轉(zhuǎn)換為油畫風格,以下哪種方法能夠?qū)崿F(xiàn)逼真的風格轉(zhuǎn)換效果?()A.基于圖像濾波和變換的方法B.基于深度學習的風格遷移算法,如CycleGANC.基于圖像融合和合成的方法D.基于顏色映射和紋理合成的方法9、計算機視覺在工業(yè)檢測中的應用可以提高生產(chǎn)效率和質(zhì)量。假設要檢測生產(chǎn)線上產(chǎn)品的表面缺陷,以下關于工業(yè)檢測中的計算機視覺技術的描述,正確的是:()A.傳統(tǒng)的機器視覺方法在檢測復雜的表面缺陷時比深度學習方法更可靠B.深度學習模型需要大量的有缺陷和無缺陷樣本進行訓練,才能準確檢測出各種缺陷C.工業(yè)檢測中的計算機視覺系統(tǒng)不需要考慮實時性和準確性的平衡D.產(chǎn)品的顏色和材質(zhì)對表面缺陷檢測的結(jié)果沒有影響10、計算機視覺在自動駕駛領域有重要應用。假設車輛需要根據(jù)攝像頭采集的圖像來識別道路上的交通標志,并且要在不同天氣和光照條件下都能準確識別。以下哪種方法可能有助于提高交通標志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標志分類D.減少訓練數(shù)據(jù)中的交通標志種類11、在計算機視覺的表情識別任務中,判斷圖像或視頻中人物的表情。假設要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關于表情識別方法的描述,哪一項是不正確的?()A.可以通過分析面部肌肉的運動和特征點的變化來識別表情B.深度學習模型能夠?qū)W習不同表情的模式和特征,實現(xiàn)準確的表情分類C.表情識別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識別可以準確地識別出所有細微和復雜的表情,不受個體差異和文化背景的影響12、在計算機視覺的圖像增強任務中,假設要提高一張低光照圖像的質(zhì)量。以下關于圖像增強方法的描述,正確的是:()A.直方圖均衡化能夠均勻分布圖像的灰度級,但可能會導致細節(jié)丟失B.基于濾波的方法可以有效地去除噪聲,但同時也會模糊圖像的邊緣C.伽馬校正只適用于校正過亮的圖像,對于低光照圖像效果不佳D.所有的圖像增強方法都能夠在不引入任何失真的情況下提高圖像質(zhì)量13、在計算機視覺的圖像生成任務中,假設要生成逼真的人臉圖像。以下關于生成模型的架構(gòu)選擇,哪一項是需要特別關注的?()A.選擇傳統(tǒng)的多層感知機(MLP)架構(gòu)B.采用生成對抗網(wǎng)絡(GAN)架構(gòu),通過對抗訓練生成高質(zhì)量圖像C.運用卷積神經(jīng)網(wǎng)絡(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(RNN)架構(gòu),處理圖像的序列信息14、在計算機視覺的發(fā)展中,模型的可解釋性是一個重要的研究方向。以下關于模型可解釋性的描述,不準確的是()A.模型可解釋性旨在理解模型是如何做出決策和生成輸出的B.可解釋性對于建立用戶對模型的信任和確保模型的公正性具有重要意義C.一些可視化技術,如特征圖可視化和類激活映射,可以幫助解釋模型的決策過程D.目前的計算機視覺模型都具有良好的可解釋性,能夠清晰地解釋其決策依據(jù)15、計算機視覺在智能零售中的應用可以改善購物體驗和提高運營效率。假設一個超市需要通過計算機視覺實現(xiàn)自動結(jié)賬和庫存管理。以下關于計算機視覺在智能零售中的描述,哪一項是不準確的?()A.可以通過商品識別技術自動識別顧客購買的商品,實現(xiàn)快速結(jié)賬B.能夠?qū)崟r監(jiān)測貨架上商品的庫存水平,及時提醒補貨C.計算機視覺系統(tǒng)能夠準確識別所有商品的包裝和標簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營銷策略提供數(shù)據(jù)支持16、在計算機視覺的車牌識別任務中,需要從車輛圖像中準確提取車牌號碼。假設車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學習的車牌識別D.基于特征提取的車牌識別17、計算機視覺中的圖像增強技術可以改善圖像質(zhì)量。假設要對一張低光照條件下拍攝的圖像進行增強,以下關于圖像增強方法的描述,正確的是:()A.簡單地增加圖像的亮度就能有效改善低光照圖像的質(zhì)量B.直方圖均衡化方法總是能夠在不引入噪聲的情況下增強圖像對比度C.基于深度學習的圖像增強方法能夠自適應地學習到適合的增強策略D.圖像增強不會改變圖像的原始信息和內(nèi)容18、在計算機視覺的目標跟蹤任務中,目標可能會被遮擋、變形或快速移動。假設要跟蹤一個在人群中快速移動的人物,以下哪種跟蹤算法可能更適合應對這種復雜情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于均值漂移的跟蹤算法D.基于模板匹配的跟蹤算法19、在計算機視覺的圖像風格遷移任務中,將一張圖像的風格應用到另一張圖像上。假設要將一幅油畫的風格遷移到一張照片上,以下關于圖像風格遷移方法的描述,正確的是:()A.基于手工特征提取和風格轉(zhuǎn)換的方法能夠?qū)崿F(xiàn)自然逼真的風格遷移B.深度學習中的生成對抗網(wǎng)絡(GAN)在風格遷移中無法生成多樣化的風格效果C.圖像的內(nèi)容和風格可以完全獨立地進行處理,互不影響D.考慮圖像的局部和全局特征以及語義信息能夠提升風格遷移的質(zhì)量20、在計算機視覺的圖像融合任務中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設要將一張白天拍攝的風景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果二、簡答題(本大題共5個小題,共25分)1、(本題5分)描述計算機視覺在航空故障檢測中的應用。2、(本題5分)解釋計算機視覺在物流中的包裹分揀和識別。3、(本題5分)說明計算機視覺在地震監(jiān)測中的作用。4、(本題5分)簡述計算機視覺在運動器材制造中的質(zhì)量控制。5、(本題5分)計算機視覺中如何處理小目標檢測問題?三、分析題(本大題共5個小題,共25分)1、(本題5分)一家書店的室內(nèi)設計營造出了濃厚的文化氛圍和舒適的閱讀環(huán)境。請研究室內(nèi)設計在書架布局、燈光照明、座位設置上的策略,以及如何吸引讀者長時間停留和購買書籍。2、(本題5分)某茶葉品牌的包裝設計體現(xiàn)傳統(tǒng)文化韻味,材質(zhì)選擇環(huán)保。請?zhí)接懘嗽O計在傳遞品牌文化、吸引消費者、促進環(huán)保理念方面的策略,以及如何在市場競爭中突出品牌特色。3、(本題5分)一家文具品牌的產(chǎn)品包裝設計充滿創(chuàng)意和趣味性,適合學生和辦公人群。請分析這種設計在吸引消費者、展示產(chǎn)品特點、提升品牌知名度方面的效果,以及如何與品牌的定位和目標

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論