甘肅省天水市一中2025屆高三5月第三次周考數(shù)學試題含解析_第1頁
甘肅省天水市一中2025屆高三5月第三次周考數(shù)學試題含解析_第2頁
甘肅省天水市一中2025屆高三5月第三次周考數(shù)學試題含解析_第3頁
甘肅省天水市一中2025屆高三5月第三次周考數(shù)學試題含解析_第4頁
甘肅省天水市一中2025屆高三5月第三次周考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

甘肅省天水市一中2025屆高三5月第三次周考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.2.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.3.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.4.古希臘數(shù)學家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.5.已知數(shù)列滿足,則()A. B. C. D.6.已知,滿足約束條件,則的最大值為A. B. C. D.7.設集合,,則().A. B.C. D.8.把滿足條件(1),,(2),,使得的函數(shù)稱為“D函數(shù)”,下列函數(shù)是“D函數(shù)”的個數(shù)為()①②③④⑤A.1個 B.2個 C.3個 D.4個9.關于函數(shù),有下述三個結論:①函數(shù)的一個周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③10.已知復數(shù),為的共軛復數(shù),則()A. B. C. D.11.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.212.為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示.勞倫茨曲線為直線時,表示收入完全平等.勞倫茨曲線為折線時,表示收入完全不平等.記區(qū)域為不平等區(qū)域,表示其面積,為的面積,將稱為基尼系數(shù).對于下列說法:①越小,則國民分配越公平;②設勞倫茨曲線對應的函數(shù)為,則對,均有;③若某國家某年的勞倫茨曲線近似為,則;④若某國家某年的勞倫茨曲線近似為,則.其中正確的是:A.①④ B.②③ C.①③④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.14.記等差數(shù)列和的前項和分別為和,若,則______.15.“北斗三號”衛(wèi)星的運行軌道是以地心為一個焦點的橢圓.設地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,則“北斗三號”衛(wèi)星運行軌道的離心率為__________.16.已知函數(shù),則曲線在點處的切線方程是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.18.(12分)已知函數(shù).(1)求函數(shù)f(x)的最小正周期;(2)求在上的最大值和最小值.19.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數(shù)a的取值范圍;(3)在(2)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.20.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,21.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.22.(10分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.2.C【解析】

設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.3.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.4.B【解析】

推導出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.5.C【解析】

利用的前項和求出數(shù)列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.6.D【解析】

作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.7.D【解析】

根據(jù)題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據(jù)題意,則故選:D此題考查集合的交并集運算,屬于簡單題目,8.B【解析】

滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,分別對所給函數(shù)進行驗證.【詳解】滿足(1)(2)的函數(shù)是偶函數(shù)且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.本題考查新定義函數(shù)的問題,涉及到函數(shù)的性質(zhì),考查學生邏輯推理與分析能力,是一道容易題.9.C【解析】

①用周期函數(shù)的定義驗證.②當時,,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當時,,故③正確.故選:C.本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.10.C【解析】

求出,直接由復數(shù)的代數(shù)形式的乘除運算化簡復數(shù).【詳解】.故選:C本題考查復數(shù)的代數(shù)形式的四則運算,共軛復數(shù),屬于基礎題.11.C【解析】

推導出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.本題主要考查函數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.12.A【解析】

對于①,根據(jù)基尼系數(shù)公式,可得基尼系數(shù)越小,不平等區(qū)域的面積越小,國民分配越公平,所以①正確.對于②,根據(jù)勞倫茨曲線為一條凹向橫軸的曲線,由圖得,均有,可得,所以②錯誤.對于③,因為,所以,所以③錯誤.對于④,因為,所以,所以④正確.故選A.二、填空題:本題共4小題,每小題5分,共20分。13.x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點縱坐標,然后對函數(shù)求導數(shù),進一步求出切線斜率,最后利用點斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.本題考查利用導數(shù)求切線方程的基本方法,利用切點滿足的條件列方程(組)是關鍵.同時也考查了學生的運算能力,屬于基礎題.14.【解析】

結合等差數(shù)列的前項和公式,可得,求解即可.【詳解】由題意,,,因為,所以.故答案為:.本題考查了等差數(shù)列的前項和公式及等差中項的應用,考查了學生的計算求解能力,屬于基礎題.15.【解析】

畫出圖形,結合橢圓的定義和題設條件,求得的值,即可求得橢圓的離心率,得到答案.【詳解】如圖所示,設橢圓的長半軸為,半焦距為,因為地球半徑為R,若其近地點?遠地點離地面的距離大約分別是,,可得,解得,所以橢圓的離心率為.故答案為:.本題主要考查了橢圓的離心率的求解,其中解答中熟記橢圓的幾何性質(zhì),列出方程組,求得的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.16.【解析】

求導,x=0代入求k,點斜式求切線方程即可【詳解】則又故切線方程為y=x+1故答案為y=x+1本題考查切線方程,求導法則及運算,考查直線方程,考查計算能力,是基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2)詳見解析.【解析】

(1)利用求導數(shù),判斷在區(qū)間上的單調(diào)性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數(shù)只需時,恒成立,設(),需,根據(jù)(1)中的結論先求出,再構造函數(shù)結合導數(shù)法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數(shù),則,所以在區(qū)間上是增函數(shù).又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數(shù),所以,故.本題考查導數(shù)的綜合應用,涉及到函數(shù)的單調(diào)性、函數(shù)的零點、極值最值、不等式的證明,分離參數(shù)是解題的關鍵,意在考查邏輯推理、數(shù)學計算能力,屬于較難題.18.(1);(2)見解析【解析】

將函數(shù)解析式化簡即可求出函數(shù)的最小正周期根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出函數(shù)在定義域上的最大值和最小值【詳解】(Ⅰ)由題意得原式的最小正周期為.(Ⅱ),.當,即時,;當,即時,.綜上,得時,取得最小值為0;當時,取得最大值為.本題主要考查了兩角和與差的余弦公式展開,輔助角公式,三角函數(shù)的性質(zhì)等,較為綜合,也是??碱}型,需要計算正確,屬于基礎題19.(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】

(2)設圓心為M(m,0),根據(jù)相切得到,計算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點M(2,0),計算得到答案.【詳解】(2)設圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因為m為整數(shù),故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,由于a>0,解得a,所以實數(shù)a的取值范圍是().(3)設符合條件的實數(shù)a存在,則直線l的斜率為,l的方程為,即x+ay+2﹣4a=0,由于l垂直平分弦AB,故圓心M(2,0)必在l上,所以2+0+2﹣4a=0,解得.由于,故存在實數(shù)使得過點P(﹣2,4)的直線l垂直平分弦AB.本題考查了直線和圓的位置關系,意在考查學生的計算能力和轉化能力.20.(1)列聯(lián)表見解析,有把握;(2)分布列見解析,.【解析】

(1)根據(jù)頻率分布直方圖補全列聯(lián)表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數(shù)學期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012本題考查獨立性檢驗的應用,考查離散型隨

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論