人工智能機(jī)器學(xué)習(xí)Convolutional Neural Network for Short-term Wind Power Forecasting_第1頁(yè)
人工智能機(jī)器學(xué)習(xí)Convolutional Neural Network for Short-term Wind Power Forecasting_第2頁(yè)
人工智能機(jī)器學(xué)習(xí)Convolutional Neural Network for Short-term Wind Power Forecasting_第3頁(yè)
人工智能機(jī)器學(xué)習(xí)Convolutional Neural Network for Short-term Wind Power Forecasting_第4頁(yè)
人工智能機(jī)器學(xué)習(xí)Convolutional Neural Network for Short-term Wind Power Forecasting_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ConvolutionalNeuralNetworkforShort-termWind

PowerForecasting

MargaridaSolas

Powergrid

Portugal

margarida.solas@powergrid.pt

NunoCepeda

Powergrid

Portugal

nuno.cepeda@powergrid.pt

JoaquimL.Viegas

IDMEC,InstitutoSuperiorTe′cnico

UniversidadedeLisboa

Lisboa,Portugal

joaquim.viegas@tecnico.ulisboa.pt

Abstract—Windpowergenerationisbecomingincreasingly

relevanttothepowersupplysystemasitiscleanandrenewable.

Thispaperproposesanovelmethodologyforshort-termwind

powerforecasting,basedonaconvolutionalneuralnetwork

(CNN).Inthiswork,weevaluatetheCNNabilityofpredicting

thewindpowergenerationbycomparingittotwobenchmarking

methods–ARIMAandgradientboostingmachine(GBM).We

provethatCNNiswellsuitedforthispurpose,outperformingthe

othertestedtechniques,speciallywhenthepredictionhorizonis

greaterthan1-hour.Besides,thispapershowsthatadditionalfea-

tureslikemeteorologicalforecastsprovidefruitfulinformation,

poweringtheCNNperformance.

IndexTerms—windpowerforecasting,convolutionalneural

network,benchmarkingmethods

I.INTRODUCTION

Nowadays,renewableenergysourcessuchaswindpower

andsolarpowerarewidelyusedastheyarenotrelianton

exhaustibleandpollutingrawresources[1].However,their

uncertaintyandinstabilitycharacterizeahugechallengeto

thepowersupplysystem,demandinganaccurateforecasting

model[2]–[4].

Inlastdecades,thescienti?ccommunitywasstimulatedto

addressthisissue,generatingavastcollectionofapproaches

thatincludebothstatisticalanddata-drivenmethods[5]–[7].

Morerecently,deeplearningalgorithmshavealsobeenim-

plementedinthiscontext.Deeplearningisamachinelearning

sub-?eld,concernedwithcomplexarchitecturesthatmimic

thestructureandfunctionofthehumanbrain,nameddeep

arti?cialneuralnetworks(ANN).DeepANNarchitectures

modelthenonlinearitiesintheinputandextractcomplexfea-

turesfromdatabyperformingoperationsacrossthenetwork.

Deeplearningtechniqueshavebeengainingmomentumdue

totheirsuccessfulapplicationinseveralsoftware?elds,such

ascomputationalvision,speech,audioandnaturallanguage

processing[8].Consequently,itbecameatrendfortimeseries

forecasting,aswell[9].

Inthiswork,weevaluatetheabilityofaconvolutional

neuralnetwork(CNN)ofpredictingthewindpowerseries

atleadtimesfrom1to24hoursaheadbycomparingitto

twobenchmarkingmethods–ARIMAandgradientboosting

machine(GBM).WeaimtoevaluatetheCNNcapacityof

978-1-5386-8218-0/19/$31.00?2019IEEE

automaticallylearntemporaldependenciesandstructuresthat

aretypicaloftimeseriessuchastrendsandseasonalityagainst

thetwomentionedmethods.

ARIMAisoneofthemostcommontimeseriesmodels

becauseitpresentsquite?exibilityanditonlyassumesthat

databecomestationaryafterdifferencing[10].

GBMgathersseveralstrengthswhichjustifyitschoice.

Itautomaticallydetectsnon-linearfeatureinteractionsandit

mustpresentastrongpredictivecapacityasitisfairlyrobust

toover?tting[11].

CNNswereselectedovertheremainingdeeparchitectures

becausetheyareparticularlysuitablefortuningdatathathas

agrid-basedstructure[8].Asatimeseriesrepresentsa1-

dimensionalgridofsamplesequallyspacedintime,CNNs

shouldbeabletomodelthiskindofdataaswell.Nevertheless,

only[12]applyCNNsforwindpowerforecastinginthe

literature.

Inthiswork,weproposeanovelCNN-basedmethodology

wheremeteorologicalforecastsareincludedaspredictorsfor

the?rsttime.Ourmaingoalsareasfollow:(1)reviewing

thelatestpublishedworkregardingdeeparchitecturesapplied

totimeseriesforecastingingeneral,andparticularlywind

powerforecasting;(2)unravellingthepotentialofaCNNfor

thispurpose;(3)comparingtheperformanceofaCNNtotwo

benchmarkingmethods–ARIMAandGBM;(4)unveiling

howadditionalfeatureslikemeteorologicalforecastsimpact

theCNNperformance.

II.RELATEDWORK

Inthelastyears,severalstudiesabouttimeseriesforecasting

werecarriedout,unravellingthepotentialofdeeplearning

techniquesforsuchpurpose.Someprominentalgorithms,

suchasdeepbeliefnetwork(DBN),deepBoltzmannmachine

(DBM)andstackedauto-encoders(SAE)wereappliedtothis

context.

Theapproachsuggestedin[13]wasoneofthe?rstoffering

thepromiseofdeeplearningmethodsfortimeseriesforecast-

ing.Thisworkfocusedontimeseriesingeneral,butasimilar

approachwasappliedtowindpowerforecastingin[2].

In[14],aDBMwasimplementedandin[15]aSAEwith

aregressionlayerwasapplied,bothtosolvethewindspeed

forecastingtask.

In[16],the?rstdeepensemblemethodfortimeseriesfore-

castingwasproposed.Thiscomplexarchitectureisgivenbya

setofconcurrentDBNsplacedinparallel,whoseoutputfeeds

asupportvectorregression(SVR)thatworksasoutputlayer.

Soonafter,differentcombinationsofdeeplearningtechniques

appliedtotimeseriesforecastingwerepublished.Theworkin

[17]joinedanautoencoder(AE)toalongshort-termmemory

(LSTM)topredictsolarpowerandmoreover,itcomparedthe

ensemblemethodperformancetotheperformanceofaDBN

andthementionedmethodsworkingseparately.

In[12],acooperativeCNN-basedensemblewaspresented

forthe?rsttime.Inthatwork,windrawdataisdecomposed

intodifferentfrequencycomponentsusingtheWaveletTrans-

form(WT)andeachcomponentisprovidedtoadistinctCNN.

Theoutputisobtainedbyaggregatingthepredictionofall

CNNs.Itwastheonlywork,toourknowledge,thatapplied

CNNtopredictthewindpowerseries.

In[18],anidenticalapproachwaspresentedtopredictthe

loaddemandseriesbutaDBN-basedensembleisusedinstead.

Besides,theloaddemandseriesisdecomposedintoseveral

intrinsicmodefunctions(IMFs)byapplyingtheEmpirical

ModeDecomposition(EMD)algorithminsteadoftheWT.

Wehavenoticedthatthedeeparchitecturethatappearinthe

literaturemoreoftenfortimeseriesforecastingistheDBN

[14],[16],[18].Today,however,DBNshavemostfallenout

offavorandhavebeenreplacedbyrecurrentneuralnetworks

(RNNs)andCNNs[8].AsCNNseemedtousmoresuitable

thanRNNfortimeseriesforecastingduetoreasonsstated

intheprevioussection,wedecidedtocarryoutthisstudyto

evaluateitspotential.

III.FORECASTINGMETHODS

Inthiswork,twoCNNarchitecturesaretestedagainst

ARIMAandGBM.Below,webrie?ydescribethebenchmark-

ingmethods,followedbytheCNN.

A.AutoregressiveIntegratedMovingAverage

ARIMAisgivenbythecombinationofthreeclassesof

models–autoregressive(AR),integrated(I)andmoving

average(MA)–whichwerealldesignedtodealwithtime

series.TheARpartofARIMAstandsforautoregressiveand

includespredictorsthatarelaggedversionsoftheseries;the

MApartstandsformovingaverageandtherespectiveterm

isalinearcombinationoflaggedforecastingerrorsandtheI

componentofARIMAstandsforintegratedasitmakesthe

timeseriesstationarybyperformingadifferencingprocess

thatmaybecarriedoutmorethanonce[19].

ARIMAiscommonlydenotedARIMA(p,d,q)wherepa-

rameterprepresentstheorderoftheautoregressivepart,

parameterdisthedifferencingdegreeandparameterqisthe

sizeofthemovingaveragewindow.ARIMA(p,d,q)model

hastheequation:

i!dXt=i!

XX

pq

1?αiB(1?B)1+θiL

εt(1)

i=1i=1

where,Xtisthetimeseriesobservationatinstancet,αirepre-

senttheparametersoftheautoregressivepart,θirepresentthe

parametersofthemovingaveragepart,εtaretheerrorterms,

LiisthelagoperatorandBiisthebackwardshiftoperator,

thathastheeffectofshiftingbackwardsanobservationbyi

periods.

ThechoiceofARIMAparameters(p,d,q)requiressome

expertiseandcanbequiteexhaustingifthesearchisdone

manually.Wetriedseveralcombinationsofparametersto

achievethesetthat?ttedbetterthewindseriesso,wegot

ARIMA(2,1,0).

B.GradientBoostingMachine

GBMisanensembleoftreesthatworkasweakpredictors.

Thisensembleisbuiltinastage-wisefashionso,eachtreeis

createdtocorrecterrorsofthepreexistentones[20].

ThesetofGBMparameterscanbedividedinto2categories:

(i)tree-speci?cparameterswhichareusedtode?neeach

individualtreeand(ii)boostingparameterswhichareused

tocreatethetreeensemble.SinceGBMhasaconsiderable

setoffreeparameters,weusedanexhaustivesearchstrategy.

TableIdepictsthebestsetofparametersacquiredthroughthe

grid-searchprocedure.

TABLEI

GBMPARAMETERS

ParametersValues

Tree-speci?cmaximumdepth3

numberofsamplestomakeasplit100

minimumnumberofsamplesataleafnode50

splitcriterionMSE

Boostingnumberoftrees500

optimizationfunctionHuberloss

fractionofsamplestotraineachtree50%

InTableI,the?rstthreeparametersareknobstoprevent

over?ttingbyavoidingtreesofhavingunpopulatedpathsand

leafnodesofrepresentingfewsamples.Thecriterionusedto

evaluatethesplitqualityisthemeansquarederror(MSE)but

theHuberlossisusedasoptimizationfunction[21]instead.

Huberlossislesssensitivetooutliersthansquarederror

becauseitappliesasofterpenaltytogreatresiduals.Astime

seriesoftencontainnoise,theapplicationofHuberlossas

costfunctionisparticularlysuitable.TheHuberlossisgiven

by

L(x,x?)=

ii

(x??|≤

x?x?δ

iii

2

12

,

(2)

2otherwise,

δ|?|?

xx?δ

ii

2

1

whererepresentstheactualvalueofthei-thsample,is

xx?

ii

itsestimatedvalueandreferstothetransitionpoint,i.e.,δ

valuethatde?neswhichresidualsareoutliers.

Eachtreeistrainedwitharandomsubsamplechosenat

randomwithoutreplacementfromthetrainingset.Byusing

suchsubsetsofdatafor?ttingeachweakpredictor,oneim-

provestheoverallmodelrobustnessratherthantheprediction

capacityofeachtree[22].

C.ConvolutionalNeuralNetwork

CNNiscomprisedoftwocomponentswhichareresponsible

forextractingfeaturesandreturningeithertheclassi?cation

ortheregressionoutput,respectively.CNNowesitsnameto

themathematicaloperationperformedonthe?rstcomponent

whichismadeofconvolutionandpoolinglayers.Convolution

layersapplyasetof?lterstotheinput,generatingasetoffea-

turemapsandpoolinglayersareinsertedbetweensuccessive

convolutionlayerstodownsampletheinputvolume,helping

toavoidover?tting.

UnlikeinconventionalANN,theselayersarenotfully-

connected,i.e.,theirneuronsconnectonlytoregionsof

neuronsoftheprecedinglayers.ThispropertyallowsCNNs

tohavefewerfreeparametersandconsequently,tobecom-

putationallylessdemanding[23].

CNNisvery?exibleandhasagoodpredictivecapacity

whetherparametersarecarefullytuned.CNNparameterslike

weightsandbiasareobtainedinadata-drivenfashionthrough

thebackpropagationalgorithmbutCNNhyperparametersare

setbeforetraining.Weusedrandomsearchinthehyperparam-

etertuningwhichismoretimeef?cientthangrid-search[24].

TableIIsumsupthesetofhyperparametersusedtode?nethe

networkstructureandhowitistrained.

TABLEII

CNNPARAMETERS

ParametersValues

wherenirepresentsthenumberofinputunitsinthatlayer.

BesidestheparametersshowninTableII,CNNhasan

additionalsetofparameterswhichincludethekernelsize,

strideandpaddinginbothconvolutionandpoolinglayers,the

optimizerparametersandthenumberofunitsineachfully-

connectedlayer.

Inthiswork,wedesigntwoCNNarchitecturestoapply

either1-Dconvolutionor2-Dconvolution,furtherreferredto

asCNN-1DandCNN-2D,respectively.EachCNNis?ttedto

aspeci?cdataset.Bothsetsincluderollingpartitionsofthe

windpowerseriesbutthedatasetusedtocreatetheCNN-2D

alsoincludesrollingpartitionsofaserieswithwindspeed

forecasts.

IV.METHODOLOGY

Inthiswork,weusedataprovidedonkagglefortheGlobal

EnergyForecastingCompetition(GEFCom2012)1.Thisan-

nualcontestusedtorewardwhowasabletoforecastmore

accuratelythehourlywindpowerupto48hoursaheadat7

locations.

Datagathernormalizedhourlywindpowermeasurements

forsevenwindfarmsandwindforecastsateachlocationfor

18months,coveringtheperiodfromJul.2009toJun.2012.

Thewindforecastsincludespeed,directionandmeridional

andzonalwindcomponents.

Nevertheless,weonlyevaluatethewindpowerforecasting

performanceofARIMA,GBMandCNNatleadtimesfrom

1to24hoursahead.

Networkconvolutionlayers(c)3

poolinglayers(p)3

fullyconnectedlayers(f)2

layerssequencec.p.c.p.c.p.f.f

techniqueofsubsamplingmaxpooling

dropout50%

activationfunctionReLu

TrainingweightsinitializationHe-et-al

lossfunctionMAE

optimizationalgorithmAdam

batchsize20

epochs500

Meanabsoluteerror(MAE)isadoptedaslossfunctionand

Adamisusedasoptimizationalgorithmbecauseitshowshuge

performancegainsintermsoftrainingspeed[25].

Thankstotheuseofactivationfunctions,ANNsareableto

detectnonlinearitiesondata.Inthiswork,weusetheRecti?er

ActivationFunction(ReLU)asitisthemostwidely-used[26].

ReLUisgivenby

A.Data

CNNandGBMaretrainedwithadatasetcreatedina

iterativefashionwhileARIMA?tsdirectlyaportionofthe

windpowerseries,asfollows:

?BothCNNandGBMaretrainedwithadatasetconsisting

oftimeseriespartitions,i.e.,thesuccessivepositionsof

arectangularwindowthatslidesoverthewindpower

serieswithunitstrideand72unitsoflength.

?Onotherhand,ARIMAis?ttedtoaportionofwind

powerseriescontaining13monthsofwindpowergener-

ationtopredictthefollowinginstance.Ateachiteration,

ARIMAisrecreated.

Forforecastersatleadtimesgreaterthan1hour,arolling

forecastingprocedureisemployed.Basically,eachpredicted

hourlypowervalueisusedaspredictorofthenextpointinthe

timeseriestillthepredictionhorizonhasbeenfullycovered.

B.ModelEvaluation

ReLU(y)=max(0,y)=y+,(3)

whereyistheweightedsumoftheneuron’sinputsplusthe

biasterm.AsweuseReLUactivationfunction,theweight

initializationisdoneusingthemethodderivedbyHe-et-al

in[27].Regardingthismethod,samplesaredrawnfroma

truncatednormaldistributionwithzeromeanandstandard

deviationgivenby

σ=r

,(4)

2

ni

Theperformanceisgenericallyevaluatedonanunseen

portionofdata,namedtestset.BothCNNandGBMare?tted

tothetrainingsetdrawnatrandomfromthewholedataset

(0.75%),andtestedagainsttheremainingdata.AsARIMAis

rebuiltateachiteration,weuseallpredictionstomeasurethe

overallmodelperformance.

Inthiswork,weusethreemetricstoevaluatethepredic-

tivecapacityofthemethodsunderanalysis:meanabsolute

1/c/GEF2012-wind-forecasting

error(MAE),rootmeansquarederror(RMSE)andexplained

varianceregressionscore(EVS).Mathematicalformulasare

presentedinTableIII.

TABLEIII

PERFORMANCEMETRICS

EvaluationmetricExpression

NP

MAE1

N

i=1|xi?x?i|

RMSEq

NP

1N

i=1(xi?x?i)2

EVS1?

Var(x?x?)

Var(x)

V.RESULTSANDDISCUSSION

Thethreemetricsstatedbeforewereusedtoassessthe

performanceoftheconvolutionalarchitectureagainstthe

benchmarkingmethods.TableIVdepictsnotonlythe1-

hourleadforecastingperformanceofthefourmethodsunder

evaluationbutalsotheresultsreturnedbyapersistencemodel,

i.e.,amodelthatpresumesthatthewindpoweratt+1

isequaltothewindpowerattheprecedingmomentt,

regardlesstheatmosphericfactors.TableIVshowsthatall

methods(ARIMA,GBM,CNN-1D,CNN-2D)outperformthe

persistencemodelanditprovesthattheproposedCNN-2D

performedthebestoverall.Besides,wecanseethatARIMA,

GBMandCNN-1Dplaysimilarly.

TABLEIV

MODELPERFORMANCEFOR1-HOURLEADFORECASTING

TableVpresentsthehourlyday-aheadpredictionperfor-

manceofallmethods.BycomparingTableIVandTableV,

onecanseethattheoverallperformancedecaysregardless

themethodbecausetherollingforecastingprocedureused

topredictthewindpowerinstancesupto24-hoursahead

propagateserrorsalongthepredictionhorizon.Forthatreason,

thewindpowerforecastsaregenericallylessreliableasthe

predictionhorizonincreases.

Althoughneithermethodiscompletelyrobustorimmuneto

thepropagationoferrors,CNN-2Dstillhasthebestpredictive

capacity,followedbyARIMA.ARIMAisthesecondbest

methodbecausethereareportionsofthetimeseriesthatare

nearlyconstant.Whenthewindpowergraphpresentsgreater

variability,bothARIMAandGBMseemtofail(Figure2).

TABLEV

MODELPERFORMANCEATLEADTIMESOF24-HOURS

MAERMSEEVSTime[s]

PERSIST.0.26650.40890.0987-

ARIMA0.20890.26140.20247503.3096

GBM0.21590.27310.14970.9300

CNN-1D0.25730.32880.12913.2320

CNN-2D0.19480.20520.48823.4783

Figure2displaysadayinwhichthewindpowerseries

exhibithighvariability.ARIMAandGBMactasapersistence

model,sotheydonotseemtocapturetimedependenciesand

temporalstructures.Onceagain,itisclearthatCNN-2Disthe

methodwhichapproximatethetimeseriesmoreclosely.

MAERMSEEVSTime[s]

PERSIST.0.08030.09680.8454-

ARIMA0.06400.08860.8843425.8349

GBM0.06310.08690.88990.0020

CNN-1D0.06670.08890.88980.0803

CNN-2D0.04890.07770.93820.0115

Figure1comparesthe1-hourleadforecastsprovidedbyall

methodsfor5daysandthedesiredgraph(target).Wecansee

thatallmethodsyieldaquiteaccurateapproximationofthe

windpowerseries.

Fig.2.24-hoursforecastingofhourlywindpower

Furthermore,thedifferencebetweentheshort-termforecast-

ingperformanceofCNN-1DandCNN-2DinbothTablesIV

andVshowsusthatmeteorologicalforecastslikewindspeed

provideusefulinformation,improvingthemodelforecasting

abilityingeneral,butspeciallyforapredictionhorizongreater

than1-hour.

VI.CONCLUSIONS

Fig.1.1-hourforecastingofhourlywindpower(5days)

ThispaperstudiesthepotentialofaCNN-basedmethod-

ologyforwindpowerforecastingupto24-hoursaheadby

comparingittoARIMAandGBM.

Withthiswork,wedrawthreemainconclusions.Firstly,we

showthatbothCNNarchitecturesareabletopredictthehourly

windpowergenerationaswellasthebenchmarkingmethods.

Secondly,weprovethatCNN-2Doutperformstheremaining

methodsingeneral,butspeciallywhenthepredictionhorizon

isgreaterthan1-hour.Finally,weshowthatARIMAandGBM

failtopredictthewindpowergenerationwhenthedailypower

curveexhibitshighvariability.

Asthepresentworkisencouraging,wewanttofurtherstudy

howadditionalmeteorologicalforecastslikewinddirection

impactthemodelperformancebyincludingsuchfeaturesin

thedataset.Inthefuture,wealsowanttostudythepotential

ofaCNN-basedensemblemadeoftwoCNNswhereoneis

?ttedtothewindpowerseriesandtheotheris?ttedtothe

meteorologicalforecastsforthewholepredictionhorizon.

ACKNOWLEDGMENT

ThisworkwassupportedbyFCT,throughIDMEC,under

LAETA,projectUID/EMS/50022/2019.TheworkofMar-

garidaSolasandNunoCepedawassupportedbyPowergrid

Lda,throughProgramaOperacionalRegionaldoCentro,

Projeto11229.

REFERENCES

[1]M.R.Patel,Windandsolarpowersystems:design,analysis,and

operation.CRCpress,2005.

[2]Y.Tao,H.Chen,andC.Qiu,“Windpowerpredictionandpattern

featurebasedondeeplearningmethod,”P(pán)owerandEnergyEngineering

Conference(APPEEC),2014IEEEPESAsia-Paci?c,pp.1–4,2014.

[3]N.Augustine,S.Suresh,P.Moghe,andK.Sheikh,“Economicdispatch

foramicrogridconsideringrenewableenergycostfunctions,”inInno-

vativeSmartGridTechnologies(ISGT),2012IEEEPES.IEEE,2012,

pp.1–7.

[4]J.C.Smith,M.R.Milligan,E.A.DeMeo,andB.Parsons,“Utilitywind

integrationandoperatingimpactstateoftheart,”IEEEtransactionson

powersystems,vol.22,no.3,pp.900–908,2007.

[5]G.Giebel,R.Brownsword,G.Kariniotakis,M.Denhard,andC.Draxl,

“Thestate-of-the-artinshort-termpredictionofwindpower:Aliterature

overview,”ANEMOS.plus,2011.

[6]C.Monteiro,R.Bessa,V.Miranda,A.Botterud,J.Wang,G.Conzel-

mannetal.,“Windpowerforecasting:State-of-the-art2009.”Argonne

NationalLab.(ANL),Argonne,IL(UnitedStates),Tech.Rep.,2009.

[7]S.Pelland,J.Remund,J.Kleissl,T.Oozeki,andK.DeBrabandere,

“Photovoltaicandsolarforecasting:stateoftheart,”IEAPVPS,Task,

vol.14,pp.1–36,2013.

[8]I.Goodfellow,Y.Bengio,A.Courville,andY.Bengio,Deeplearning.

MITpressCambridge,2016,vol.1.

[9]M.La¨ngkvist,L.Karlsson,andA.Lout?,“Areviewofunsupervised

featurelearninganddeeplearningfortime-seriesmodeling,”P(pán)attern

RecognitionLetters,vol.42,pp.11–24,2014.

[10]P.J.Brockwell,R.A.Davis,andM.V.Calder,Introductiontotime

seriesandforecasting.Springer,2002,vol.2.

[11]J.Friedman,T.Hastie,andR.Tibshirani,Theelementsofstatistical

learning.SpringerseriesinstatisticsNewYork,NY,USA:,2001,

vol.1,no.10.

[12]H.z.Wang,G.q.Li,G.b.Wang,J.c.Peng,H.Jiang,andY.t.Liu,

“Deeplearningbasedensembleapproachforprobabilisticwindpower

forecasting,”AppliedEnergy,vol.188,pp.56–70,2017.[Online].

Available:/10.1016/j.apenergy.2016.11.111

[13]T.Kuremoto,S.Kimura,K.Kobayashi,andM.Obayashi,“Timeseries

forecastingusingadeepbeliefnetworkwithrestrictedBoltzmann

machines,”Neurocomputing,vol.137,no.July,pp.47–56,2014.

[Online].Available:/10.1016/j.neucom.2013.03.047

[14]C.Y.Zhang,C.L.Chen,M.Gan,andL.Chen,“PredictiveDeep

BoltzmannMachineforMultiperiodWindSpeedForecasting,”IEEE

TransactionsonSustainableEnergy,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論