哈爾濱市平房區(qū)重點達標名校2024年中考數(shù)學全真模擬試題含解析_第1頁
哈爾濱市平房區(qū)重點達標名校2024年中考數(shù)學全真模擬試題含解析_第2頁
哈爾濱市平房區(qū)重點達標名校2024年中考數(shù)學全真模擬試題含解析_第3頁
哈爾濱市平房區(qū)重點達標名校2024年中考數(shù)學全真模擬試題含解析_第4頁
哈爾濱市平房區(qū)重點達標名校2024年中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

哈爾濱市平房區(qū)重點達標名校2024年中考數(shù)學全真模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.cos45°的值是(

)A.

B.

C.

D.12.計算的結果等于()A.-5 B.5 C. D.3.如圖,半徑為3的⊙A經(jīng)過原點O和點C(0,2),B是y軸左側⊙A優(yōu)弧上一點,則tan∠OBC為()A. B.2 C. D.4.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網(wǎng)的初中生約有16000人,則這部分沉迷于手機上網(wǎng)的初中生數(shù)量,用科學記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人5.一個六邊形的六個內角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.166.下列圖案中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.7.已知,下列說法中,不正確的是()A. B.與方向相同C. D.8.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.9.已知方程的兩個解分別為、,則的值為()A. B. C.7 D.310.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學記數(shù)法表示應為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×103二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC內接于⊙O,AB是⊙O的直徑,點D在圓O上,BD=CD,AB=10,AC=6,連接OD交BC于點E,DE=______.12.計算的結果是_____13.若x,y為實數(shù),y=,則4y﹣3x的平方根是____.14.關于的分式方程的解為負數(shù),則的取值范圍是_________.15.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.16.如圖所示是一組有規(guī)律的圖案,第l個圖案由4個基礎圖形組成,第2個圖案由7個基礎圖形組成,……,第n(n是正整數(shù))個圖案中的基礎圖形個數(shù)為_______(用含n的式子表示).三、解答題(共8題,共72分)17.(8分)為了豐富校園文化,促進學生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學開展“書法、武術、黃梅戲進校園”活動.今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學生參加了學校的比賽,并將比賽結果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學生人數(shù);(2)求扇形統(tǒng)計圖B等級所對應扇形的圓心角度數(shù);(3)已知A等級的4名學生中有1名男生,3名女生,現(xiàn)從中任意選取2名學生作為全校訓練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.18.(8分)如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.19.(8分)綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:

設銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當x<16時,為“不稱職”,當時為“基本稱職”,當時為“稱職”,當時為“優(yōu)秀”.根據(jù)以上信息,解答下列問題:補全折線統(tǒng)計圖和扇形統(tǒng)計圖;求所有“稱職”和“優(yōu)秀”的銷售員銷售額的中位數(shù)和眾數(shù);為了調動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標準,凡月銷售額達到或超過這個標準的銷售員將獲得獎勵。如果要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為多少萬元(結果去整數(shù))?并簡述其理由.20.(8分)如圖,在的矩形方格紙中,每個小正方形的邊長均為,線段的兩個端點均在小正方形的頂點上.在圖中畫出以線段為底邊的等腰,其面積為,點在小正方形的頂點上;在圖中面出以線段為一邊的,其面積為,點和點均在小正方形的頂點上;連接,并直接寫出線段的長.21.(8分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?22.(10分)為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?23.(12分)數(shù)學興趣小組為了研究中小學男生身高y(cm)和年齡x(歲)的關系,從某市官網(wǎng)上得到了該市2017年統(tǒng)計的中小學男生各年齡組的平均身高,見下表:如圖已經(jīng)在直角坐標系中描出了表中數(shù)據(jù)對應的點,并發(fā)現(xiàn)前5個點大致位于直線AB上,后7個點大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學生的平均身高從歲開始增加特別迅速.(2)求直線AB所對應的函數(shù)表達式.(3)直接寫出直線CD所對應的函數(shù)表達式,假設17歲后該市男生身高增長速度大致符合直線CD所對應的函數(shù)關系,請你預測該市18歲男生年齡組的平均身高大約是多少?24.某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進這兩種品牌化妝品共50套,且進貨價錢不超過4000元,應如何選擇進貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

本題主要是特殊角的三角函數(shù)值的問題,求解本題的關鍵是熟悉特殊角的三角函數(shù)值.【詳解】cos45°=.故選:C.【點睛】本題考查特殊角的三角函數(shù)值.2、A【解析】

根據(jù)有理數(shù)的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數(shù)的除法,解題的關鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.3、C【解析】試題分析:連結CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據(jù)勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數(shù)的定義.4、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】用科學記數(shù)法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、C【解析】

解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.6、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念解答.【詳解】A.不是軸對稱圖形,是中心對稱圖形;B.是軸對稱圖形,是中心對稱圖形;C.不是軸對稱圖形,也不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、A【解析】

根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【點睛】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.8、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質,等邊三角形的性質,軸對稱-最短路線問題等知識點的應用,關鍵是找出PD+PE最小時P點的位置.9、D【解析】

由根與系數(shù)的關系得出x1+x2=5,x1?x2=2,將其代入x1+x2?x1?x2中即可得出結論.【詳解】解:∵方程x2?5x+2=0的兩個解分別為x1,x2,∴x1+x2=5,x1?x2=2,∴x1+x2?x1?x2=5?2=1.故選D.【點睛】本題考查了根與系數(shù)的關系,解題的關鍵是根據(jù)根與系數(shù)的關系得出x1+x2=5,x1?x2=2.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)根與系數(shù)的關系得出兩根之和與兩根之積是關鍵.10、B【解析】試題分析:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).將13000用科學記數(shù)法表示為:1.3×1.故選B.考點:科學記數(shù)法—表示較大的數(shù)二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

先利用垂徑定理得到OD⊥BC,則BE=CE,再證明OE為△ABC的中位線得到,入境計算OD?OE即可.【詳解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE為△ABC的中位線,∴,∴DE=OD-OE=5-3=1.故答案為1.【點睛】此題考查垂徑定理,中位線的性質,解題的關鍵在于利用中位線的性質求解.12、【解析】【分析】根據(jù)二次根式的運算法則進行計算即可求出答案.【詳解】==,故答案為.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則.13、±【解析】∵與同時成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.14、【解析】

分式方程去分母轉化為整式方程,由分式方程的解為負數(shù),求出a的范圍即可【詳解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解為負數(shù),得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案為:a>1且a≠2【點睛】此題考查分式方程的解,解題關鍵在于求出x的值再進行分析15、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質,反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質.不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關于原點對稱.由關于原點對稱的坐標點性質,直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數(shù),即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.16、3n+1【解析】試題分析:由圖可知每個圖案一次增加3個基本圖形,第一個圖案有4個基本圖形,則第n個圖案的基礎圖形有4+3(n-1)=3n+1個考點:規(guī)律型三、解答題(共8題,共72分)17、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學生人數(shù);(2)由(1)求出的學生人數(shù),即可求出B等級所對應扇形的圓心角度數(shù);(3)首先根據(jù)題意列表或畫出樹狀圖,然后由求得所有等可能的結果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學生有:4÷8%=50(人)(2)B等級的學生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應扇形的圓心角度數(shù)為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結果,選中1名男生和1名女生結果的有6種.∴P(選中1名男生和1名女生)=6“點睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.通過扇形統(tǒng)計圖求出扇形的圓心角度數(shù),應用數(shù)形結合的思想是解決此類題目的關鍵.18、(1)證明見解析;(2)四邊形BCDE是菱形,理由見解析.【解析】

(1)證明△ADC≌△ABC后利用全等三角形的對應角相等證得結論.(2)首先判定四邊形BCDE是平行四邊形,然后利用對角線垂直的平行四邊形是菱形判定菱形即可.【詳解】解:(1)證明:∵在△ADC和△ABC中,∴△ADC≌△ABC(SSS).∴∠1=∠2.(2)四邊形BCDE是菱形,理由如下:如答圖,∵∠1=∠2,DC=BC,∴AC垂直平分BD.∵OE=OC,∴四邊形DEBC是平行四邊形.∵AC⊥BD,∴四邊形DEBC是菱形.【點睛】考點:1.全等三角形的判定和性質;2.線段垂直平分線的性質;3.菱形的判定.19、(1)補全統(tǒng)計圖如圖見解析;(2)“稱職”的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;(3)月銷售額獎勵標準應定為22萬元.【解析】

(1)根據(jù)稱職的人數(shù)及其所占百分比求得總人數(shù),據(jù)此求得不稱職、基本稱職和優(yōu)秀的百分比,再求出優(yōu)秀的總人數(shù),從而得出銷售26萬元的人數(shù),據(jù)此即可補全圖形.(2)根據(jù)中位數(shù)和眾數(shù)的定義求解可得;(3)根據(jù)中位數(shù)的意義求得稱職和優(yōu)秀的中位數(shù)即可得出符合要求的數(shù)據(jù).【詳解】(1)依題可得:

“不稱職”人數(shù)為:2+2=4(人),

“基本稱職”人數(shù)為:2+3+3+2=10(人),

“稱職”人數(shù)為:4+5+4+3+4=20(人),

∴總人數(shù)為:20÷50%=40(人),

∴不稱職”百分比:a=4÷40=10%,

“基本稱職”百分比:b=10÷40=25%,

“優(yōu)秀”百分比:d=1-10%-25%-50%=15%,

∴“優(yōu)秀”人數(shù)為:40×15%=6(人),

∴得26分的人數(shù)為:6-2-1-1=2(人),

補全統(tǒng)計圖如圖所示:

(2)由折線統(tǒng)計圖可知:“稱職”20萬4人,21萬5人,22萬4人,23萬3人,24萬4人,

“優(yōu)秀”25萬2人,26萬2人,27萬1人,28萬1人;

“稱職”的銷售員月銷售額的中位數(shù)為:22萬,眾數(shù):21萬;

“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:26萬,眾數(shù):25萬和26萬;

(3)由(2)知月銷售額獎勵標準應定為22萬.

∵“稱職”和“優(yōu)秀”的銷售員月銷售額的中位數(shù)為:22萬,

∴要使得所有“稱職”和“優(yōu)秀”的銷售員的一半人員能獲獎,月銷售額獎勵標準應定為22萬元.【點睛】考查頻數(shù)分布直方圖、扇形統(tǒng)計圖、中位數(shù)、眾數(shù)等知識,解題的關鍵是靈活運用所學知識解決問題.20、(1)見解析;(2)見解析;(3)見解析,.【解析】

(1)直接利用網(wǎng)格結合勾股定理得出符合題意的答案;(2)直接利用網(wǎng)格結合平行四邊形的性質以及勾股定理得出符合題意的答案;(3)連接CE,根據(jù)勾股定理求出CE的長寫出即可.【詳解】解:(1)如圖所示;(2)如圖所示;(3)如圖所示;CE=.【點睛】本題主要考查了等腰三角形的性質、平行四邊形的性質、勾股定理,正確應用勾股定理是解題的關鍵.21、(1)每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米;(2)共有三種調配方案.方案一:型挖據(jù)機7臺,型挖掘機5臺;方案二:型挖掘機8臺,型挖掘機4臺;方案三:型挖掘機9臺,型挖掘機3臺.當A型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.【解析】分析:(1)根據(jù)題意列出方程組即可;(2)利用總費用不超過12960元求出方案數(shù)量,再利用一次函數(shù)增減性求出最低費用.詳解:(1)設每臺型,型挖掘機一小時分別挖土立方米和立方米,根據(jù)題意,得解得所以,每臺型挖掘機一小時挖土30立方米,每臺型挖據(jù)機一小時挖土15立方米.(2)設型挖掘機有臺,總費用為元,則型挖據(jù)機有臺.根據(jù)題意,得,因為,解得,又因為,解得,所以.所以,共有三種調配方案.方案一:當時,,即型挖據(jù)機7臺,型挖掘機5臺;方案二:當時,,即型挖掘機8臺,型挖掘機4臺;方案三:當時,,即型挖掘機9臺,型挖掘機3臺.,由一次函數(shù)的性質可知,隨的減小而減小,當時,,此時型挖掘機7臺,型挖掘機5臺的施工費用最低,最低費用為12000元.點睛:本題考查了二元一次方程組和一次函數(shù)增減性,解答時先根據(jù)題意確定自變量取值范圍,再應用一次函數(shù)性質解答問題.22、(1)購買A型學習用品400件,B型學習用品600件.(2)最多購買B型學習用品1件【解析】

(1)設購買A型學習用品x件,B型學習用品y件,就有x+y=1000,20x+30y=26000,由這兩個方程構成方程組求出其解就可以得出結論.(2)設最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,根據(jù)這批學習用品的錢不超過210元建立不等式求出其解即可.【詳解】解:(1)設購買A型學習用品x件,B型學習用品y件,由題意,得,解得:.答:購買A型學習用品400件,B型學習用品600件.(2)設最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論