山東工商學(xué)院《機(jī)械計(jì)算機(jī)輔助設(shè)計(jì)與制造原理》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
山東工商學(xué)院《機(jī)械計(jì)算機(jī)輔助設(shè)計(jì)與制造原理》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
山東工商學(xué)院《機(jī)械計(jì)算機(jī)輔助設(shè)計(jì)與制造原理》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
山東工商學(xué)院《機(jī)械計(jì)算機(jī)輔助設(shè)計(jì)與制造原理》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
山東工商學(xué)院《機(jī)械計(jì)算機(jī)輔助設(shè)計(jì)與制造原理》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)山東工商學(xué)院

《機(jī)械計(jì)算機(jī)輔助設(shè)計(jì)與制造原理》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、考慮一個(gè)情感分析任務(wù),判斷一段文本所表達(dá)的情感是積極、消極還是中性。在特征提取方面,可以使用詞袋模型、TF-IDF等方法。如果文本數(shù)據(jù)量較大,且包含豐富的語(yǔ)義信息,以下哪種特征提取方法可能表現(xiàn)更好?()A.詞袋模型,簡(jiǎn)單直觀,計(jì)算速度快B.TF-IDF,考慮了詞的頻率和文檔的分布C.基于深度學(xué)習(xí)的詞向量表示,能夠捕捉語(yǔ)義和上下文信息D.以上方法效果相同,取決于模型的復(fù)雜程度2、想象一個(gè)語(yǔ)音識(shí)別的系統(tǒng)開發(fā),需要將輸入的語(yǔ)音轉(zhuǎn)換為文字。語(yǔ)音數(shù)據(jù)具有連續(xù)性、變異性和噪聲等特點(diǎn)。以下哪種模型架構(gòu)和訓(xùn)練方法可能是最有效的?()A.隱馬爾可夫模型(HMM)結(jié)合高斯混合模型(GMM),傳統(tǒng)方法,對(duì)短語(yǔ)音處理較好,但對(duì)復(fù)雜語(yǔ)音的適應(yīng)性有限B.深度神經(jīng)網(wǎng)絡(luò)-隱馬爾可夫模型(DNN-HMM),結(jié)合了DNN的特征學(xué)習(xí)能力和HMM的時(shí)序建模能力,但訓(xùn)練難度較大C.端到端的卷積神經(jīng)網(wǎng)絡(luò)(CNN)語(yǔ)音識(shí)別模型,直接從語(yǔ)音到文字,減少中間步驟,但對(duì)長(zhǎng)語(yǔ)音的處理可能不夠靈活D.基于Transformer架構(gòu)的語(yǔ)音識(shí)別模型,利用自注意力機(jī)制捕捉長(zhǎng)距離依賴,性能優(yōu)秀,但計(jì)算資源需求大3、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),數(shù)據(jù)具有高維度和復(fù)雜的分布。以下哪種技術(shù)可以用于將高維數(shù)據(jù)映射到低維空間以便更好地檢測(cè)異常?()A.核主成分分析(KPCA)B.局部線性嵌入(LLE)C.拉普拉斯特征映射D.以上技術(shù)都可以4、在構(gòu)建一個(gè)機(jī)器學(xué)習(xí)模型時(shí),我們通常需要對(duì)數(shù)據(jù)進(jìn)行預(yù)處理。假設(shè)我們有一個(gè)包含大量缺失值的數(shù)據(jù)集,以下哪種處理缺失值的方法是較為合理的()A.直接刪除包含缺失值的樣本B.用平均值填充缺失值C.用隨機(jī)值填充缺失值D.不處理缺失值,直接使用原始數(shù)據(jù)5、想象一個(gè)市場(chǎng)營(yíng)銷的項(xiàng)目,需要根據(jù)客戶的購(gòu)買歷史、瀏覽行為和人口統(tǒng)計(jì)信息來(lái)預(yù)測(cè)其未來(lái)的購(gòu)買傾向。同時(shí),要能夠解釋模型的決策依據(jù)以指導(dǎo)營(yíng)銷策略的制定。以下哪種模型和策略可能是最適用的?()A.建立邏輯回歸模型,通過(guò)系數(shù)分析解釋變量的影響,但對(duì)于復(fù)雜的非線性關(guān)系可能不敏感B.運(yùn)用決策樹集成算法,如梯度提升樹(GradientBoostingTree),準(zhǔn)確性較高,且可以通過(guò)特征重要性評(píng)估解釋模型,但局部解釋性相對(duì)較弱C.采用深度學(xué)習(xí)中的多層卷積神經(jīng)網(wǎng)絡(luò),預(yù)測(cè)能力強(qiáng),但幾乎無(wú)法提供直觀的解釋D.構(gòu)建基于規(guī)則的分類器,明確的規(guī)則易于理解,但可能無(wú)法處理復(fù)雜的數(shù)據(jù)模式和不確定性6、假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行主題建模,以發(fā)現(xiàn)潛在的主題和模式。以下哪種技術(shù)可能是最有效的?()A.潛在狄利克雷分配(LDA),基于概率模型,能夠發(fā)現(xiàn)文本中的潛在主題,但對(duì)短文本效果可能不好B.非負(fù)矩陣分解(NMF),將文本矩陣分解為低秩矩陣,但解釋性相對(duì)較弱C.基于詞向量的聚類方法,如K-Means聚類,但依賴于詞向量的質(zhì)量和表示D.層次聚類方法,能夠展示主題的層次結(jié)構(gòu),但計(jì)算復(fù)雜度較高7、假設(shè)正在進(jìn)行一個(gè)異常檢測(cè)任務(wù),例如檢測(cè)網(wǎng)絡(luò)中的異常流量。如果正常數(shù)據(jù)的模式較為復(fù)雜,以下哪種方法可能更適合用于發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于分類的方法8、在機(jī)器學(xué)習(xí)中,降維是一種常見的操作,用于減少特征的數(shù)量。以下哪種降維方法是基于線性變換的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t-SNED.以上都是9、在進(jìn)行模型壓縮時(shí),以下關(guān)于模型壓縮方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.剪枝是指刪除模型中不重要的權(quán)重或神經(jīng)元,減少模型的參數(shù)量B.量化是將模型的權(quán)重進(jìn)行低精度表示,如從32位浮點(diǎn)數(shù)轉(zhuǎn)換為8位整數(shù)C.知識(shí)蒸餾是將復(fù)雜模型的知識(shí)轉(zhuǎn)移到一個(gè)較小的模型中,實(shí)現(xiàn)模型壓縮D.模型壓縮會(huì)導(dǎo)致模型性能嚴(yán)重下降,因此在實(shí)際應(yīng)用中應(yīng)盡量避免使用10、假設(shè)要為一個(gè)智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過(guò)濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動(dòng)和數(shù)據(jù)稀疏問(wèn)題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對(duì)新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過(guò)濾和內(nèi)容推薦的優(yōu)點(diǎn),并通過(guò)特征工程和模型融合提高推薦效果,但實(shí)現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過(guò)與用戶的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢11、假設(shè)要對(duì)一個(gè)時(shí)間序列數(shù)據(jù)進(jìn)行預(yù)測(cè),例如股票價(jià)格的走勢(shì)。數(shù)據(jù)具有明顯的趨勢(shì)和季節(jié)性特征。以下哪種時(shí)間序列預(yù)測(cè)方法可能較為合適?()A.移動(dòng)平均法B.指數(shù)平滑法C.ARIMA模型D.以上方法都可能適用,取決于具體數(shù)據(jù)特點(diǎn)12、假設(shè)正在研究一個(gè)時(shí)間序列預(yù)測(cè)問(wèn)題,數(shù)據(jù)具有季節(jié)性和趨勢(shì)性。以下哪種模型可以同時(shí)處理這兩種特性?()A.SARIMA模型B.Prophet模型C.Holt-Winters模型D.以上模型都可以13、在機(jī)器學(xué)習(xí)中,模型的選擇和超參數(shù)的調(diào)整是非常重要的環(huán)節(jié)。通??梢允褂媒徊骝?yàn)證技術(shù)來(lái)評(píng)估不同模型和超參數(shù)組合的性能。假設(shè)有一個(gè)分類模型,我們想要確定最優(yōu)的正則化參數(shù)C。如果采用K折交叉驗(yàn)證,以下關(guān)于K的選擇,哪一項(xiàng)是不太合理的?()A.K=5,平衡計(jì)算成本和評(píng)估準(zhǔn)確性B.K=2,快速得到初步的評(píng)估結(jié)果C.K=10,提供更可靠的評(píng)估D.K=n(n為樣本數(shù)量),確保每個(gè)樣本都用于驗(yàn)證一次14、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)15、機(jī)器學(xué)習(xí)在自然語(yǔ)言處理領(lǐng)域有廣泛的應(yīng)用。以下關(guān)于機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于文本分類、情感分析、機(jī)器翻譯等任務(wù)。常見的自然語(yǔ)言處理算法有詞袋模型、TF-IDF、深度學(xué)習(xí)模型等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的說(shuō)法錯(cuò)誤的是()A.詞袋模型將文本表示為詞的集合,忽略了詞的順序和語(yǔ)法結(jié)構(gòu)B.TF-IDF可以衡量一個(gè)詞在文檔中的重要性C.深度學(xué)習(xí)模型在自然語(yǔ)言處理中表現(xiàn)出色,但需要大量的訓(xùn)練數(shù)據(jù)和計(jì)算資源D.機(jī)器學(xué)習(xí)在自然語(yǔ)言處理中的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和發(fā)展16、在進(jìn)行模型融合時(shí),以下關(guān)于模型融合的方法和作用,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)平均多個(gè)模型的預(yù)測(cè)結(jié)果來(lái)進(jìn)行融合,降低模型的方差B.堆疊(Stacking)是一種將多個(gè)模型的預(yù)測(cè)結(jié)果作為輸入,訓(xùn)練一個(gè)新的模型進(jìn)行融合的方法C.模型融合可以結(jié)合不同模型的優(yōu)點(diǎn),提高整體的預(yù)測(cè)性能D.模型融合總是能顯著提高模型的性能,無(wú)論各個(gè)模型的性能如何17、機(jī)器學(xué)習(xí)在圖像識(shí)別領(lǐng)域也取得了巨大的成功。以下關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法中,錯(cuò)誤的是:機(jī)器學(xué)習(xí)可以用于圖像分類、目標(biāo)檢測(cè)、圖像分割等任務(wù)。常見的圖像識(shí)別算法有卷積神經(jīng)網(wǎng)絡(luò)、支持向量機(jī)等。那么,下列關(guān)于機(jī)器學(xué)習(xí)在圖像識(shí)別中的說(shuō)法錯(cuò)誤的是()A.卷積神經(jīng)網(wǎng)絡(luò)通過(guò)卷積層和池化層自動(dòng)學(xué)習(xí)圖像的特征表示B.支持向量機(jī)在圖像識(shí)別中的性能通常不如卷積神經(jīng)網(wǎng)絡(luò)C.圖像識(shí)別算法的性能主要取決于數(shù)據(jù)的質(zhì)量和數(shù)量,與算法本身關(guān)系不大D.機(jī)器學(xué)習(xí)在圖像識(shí)別中的應(yīng)用還面臨著一些挑戰(zhàn),如小樣本學(xué)習(xí)、對(duì)抗攻擊等18、假設(shè)正在構(gòu)建一個(gè)語(yǔ)音識(shí)別系統(tǒng),需要對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行預(yù)處理和特征提取。語(yǔ)音信號(hào)具有時(shí)變、非平穩(wěn)等特點(diǎn),在預(yù)處理階段,以下哪種操作通常不是必需的?()A.去除背景噪聲B.對(duì)語(yǔ)音信號(hào)進(jìn)行分幀和加窗C.將語(yǔ)音信號(hào)轉(zhuǎn)換為頻域表示D.對(duì)語(yǔ)音信號(hào)進(jìn)行壓縮編碼,減少數(shù)據(jù)量19、在機(jī)器學(xué)習(xí)中,對(duì)于一個(gè)分類問(wèn)題,我們需要選擇合適的算法來(lái)提高預(yù)測(cè)準(zhǔn)確性。假設(shè)數(shù)據(jù)集具有高維度、大量特征且存在非線性關(guān)系,同時(shí)樣本數(shù)量相對(duì)較少。在這種情況下,以下哪種算法可能是一個(gè)較好的選擇?()A.邏輯回歸B.決策樹C.支持向量機(jī)D.樸素貝葉斯20、某機(jī)器學(xué)習(xí)模型在訓(xùn)練時(shí)出現(xiàn)了過(guò)擬合現(xiàn)象,除了正則化,以下哪種方法也可以嘗試用于緩解過(guò)擬合?()A.增加訓(xùn)練數(shù)據(jù)B.減少特征數(shù)量C.早停法D.以上方法都可以21、考慮一個(gè)推薦系統(tǒng),需要根據(jù)用戶的歷史行為和興趣為其推薦相關(guān)的商品或內(nèi)容。在構(gòu)建推薦模型時(shí),可以使用基于內(nèi)容的推薦、協(xié)同過(guò)濾推薦或混合推薦等方法。如果用戶的歷史行為數(shù)據(jù)較為稀疏,以下哪種推薦方法可能更合適?()A.基于內(nèi)容的推薦,利用商品的屬性和用戶的偏好進(jìn)行推薦B.協(xié)同過(guò)濾推薦,基于用戶之間的相似性進(jìn)行推薦C.混合推薦,結(jié)合多種推薦方法的優(yōu)點(diǎn)D.以上方法都不合適,無(wú)法進(jìn)行有效推薦22、在進(jìn)行特征選擇時(shí),有多種方法可以評(píng)估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評(píng)估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過(guò)計(jì)算特征引入前后信息熵的變化來(lái)衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評(píng)估特征的重要性C.隨機(jī)森林中的特征重要性評(píng)估是基于特征對(duì)模型性能的貢獻(xiàn)程度D.所有的特征重要性評(píng)估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證23、在使用深度學(xué)習(xí)進(jìn)行圖像分類時(shí),數(shù)據(jù)增強(qiáng)是一種常用的技術(shù)。假設(shè)我們有一個(gè)有限的圖像數(shù)據(jù)集。以下關(guān)于數(shù)據(jù)增強(qiáng)的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)隨機(jī)旋轉(zhuǎn)、翻轉(zhuǎn)、裁剪圖像來(lái)增加數(shù)據(jù)的多樣性B.對(duì)圖像進(jìn)行色彩變換、添加噪聲等操作也屬于數(shù)據(jù)增強(qiáng)的方法C.數(shù)據(jù)增強(qiáng)可以有效地防止模型過(guò)擬合,但會(huì)增加數(shù)據(jù)標(biāo)注的工作量D.過(guò)度的數(shù)據(jù)增強(qiáng)可能會(huì)導(dǎo)致模型學(xué)習(xí)到與圖像內(nèi)容無(wú)關(guān)的特征,影響模型性能24、在一個(gè)圖像分類任務(wù)中,模型在訓(xùn)練集上表現(xiàn)良好,但在測(cè)試集上性能顯著下降。這種現(xiàn)象可能是由于什么原因?qū)е碌??()A.過(guò)擬合B.欠擬合C.數(shù)據(jù)不平衡D.特征選擇不當(dāng)25、在進(jìn)行強(qiáng)化學(xué)習(xí)中的策略優(yōu)化時(shí),以下關(guān)于策略優(yōu)化方法的描述,哪一項(xiàng)是不正確的?()A.策略梯度方法通過(guò)直接計(jì)算策略的梯度來(lái)更新策略參數(shù)B.信賴域策略優(yōu)化(TrustRegionPolicyOptimization,TRPO)通過(guò)限制策略更新的幅度來(lái)保證策略的改進(jìn)C.近端策略優(yōu)化(ProximalPolicyOptimization,PPO)是一種基于策略梯度的改進(jìn)算法,具有更好的穩(wěn)定性和收斂性D.所有的策略優(yōu)化方法在任何強(qiáng)化學(xué)習(xí)任務(wù)中都能取得相同的效果,不需要根據(jù)任務(wù)特點(diǎn)進(jìn)行選擇二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)機(jī)器學(xué)習(xí)在疼痛醫(yī)學(xué)中的研究進(jìn)展如何?2、(本題5分)簡(jiǎn)述機(jī)器學(xué)習(xí)在生物信息學(xué)數(shù)據(jù)庫(kù)中的應(yīng)用。3、(本題5分)什么是圖神經(jīng)網(wǎng)絡(luò)(GNN)?它的應(yīng)用場(chǎng)景有哪些?4、(本題5分)解釋機(jī)器學(xué)習(xí)中AdaBoost算法的機(jī)制。三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)分析對(duì)抗樣本對(duì)圖像分類模型的影響,提出增強(qiáng)模型魯棒性的方法。2、(本題5分)運(yùn)用LSTM網(wǎng)絡(luò)對(duì)電商平臺(tái)的用戶活躍度進(jìn)行預(yù)測(cè)。3、(本題5分)依據(jù)系統(tǒng)發(fā)育學(xué)數(shù)據(jù)構(gòu)建物種進(jìn)化樹。4、(本題5分)使用梯度提升樹(GBDT)模型預(yù)測(cè)學(xué)生的考試成績(jī),分析影響成績(jī)的因素。5、(本題5分)基于樸素貝葉斯算法對(duì)郵件進(jìn)行垃圾郵件和正常郵件的分類。四、論述題(本大題共3個(gè)小題,共30分)1、(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論