




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年八年級數(shù)學下學期期末模擬預(yù)測卷03
(考試時間:100分鐘試卷滿分:120分)
考生注意:
1.本試卷27道試題,滿分120分,考試時間100分鐘.
2.本試卷分設(shè)試卷和答題紙.試卷包括試題與答題要求.作答必須涂(選擇題)或?qū)懀ǚ沁x擇題)在答題
紙上,在試卷上作答一律不得分.
3.答卷前,務(wù)必用鋼筆或圓珠筆在答題紙正面清楚地填寫姓名、準考證號碼等相關(guān)信息.
一.選擇題(共10小題每題3分,滿分30分)
1.(2020春?北京?八年級昌平一中??计谀┫铝袌D形中,是中心對稱圖形的是()
【答案】C
【分析】根據(jù)中心對稱圖形的定義逐個判斷即可.
【詳解】解:A、不是中心對稱圖形,故本選項不符合題意;
B、不是中心對稱圖形,故本選項不符合題意;
C、是中心對稱圖形,故本選項符合題意;
D、不是中心對稱圖形,故本選項不符合題意;
故選:C.
【點睛】本題考查了對中心對稱圖形的定義,能熟知中心對稱圖形的定義是解此題的關(guān)鍵.
2.(2022秋?北京?八年級北師大實驗中學校考期末)已知分式邑」的值為0,則x=()
1-X
A.1B.-1C.1或-1D.0
【答案】B
【分析】根據(jù)分式的值為0的條件及分式有意義的條件列出關(guān)于x的不等式組,求出x的值即可.
【詳解】解:回分式配的值為0,
1-X
團?八,解得%=—1.
故選:B.
【點睛】本題考查的是分式的值為0的條件,熟知分式值為零的條件是分子等于零且分母不等于零是解答
此題的關(guān)鍵.
3.(2023秋,北京西城?八年級統(tǒng)考期末)如圖,在RtAABC中,ZACB=90°,-3的度數(shù)為a.點、P在邊BC
上(點P不與點8,點C重合),作「于點。,連接24,取上4上一點E,使得EC=EP,連接即,
CE并延長CE交A2于點尸之后,有EC=ED=EA=EP.若記—APC的度數(shù)為x,則下列關(guān)于NDEF的表
達式正確的是()
A.ZDEF=2x-3aB.ZDEF=2a
C.NDEF=2a—xD.Z.DEF=180—3(z
【答案】B
【分析】由等腰三角形的性質(zhì)求出NC石尸,由三角形外角的性質(zhì)可求由平角的定義即可求
出/DEF.
【詳解】⑦EC=EP
BZECP=ZEPC=x
0ZCEP=18O°-2x
國NAPC=NB+/PAB
⑦/PAB=ZAPC—NB
^\APAB=x-a
團ED=EA
團ZEAD=/EDA=x-a
@/DEP=/EAD+/EDA=2x—2a
團ZDEF=180°-ZCEP-ZDEP
團ZDEF=180°-(180°-2x)-(2x-la)=la.
故選:B.
【點睛】此題考查等腰三角形的性質(zhì),三角形外角的性質(zhì),解題的關(guān)鍵是掌握以上知識點.
4.(2020春?北京?八年級北京市第二中學分校??计谀┤鐖D,在R儂3c中,0ACB=9O°,0ABC=3O°,將M3C
繞5點C順時針旋轉(zhuǎn)至財3。使得點A恰好落在A3上,則旋轉(zhuǎn)角度為()
A.30°B.60°C.90°D.150°
【答案】B
【分析】先利用互余得到刻=60。,再根據(jù)旋轉(zhuǎn)的性質(zhì)得C4'=CA,0AC4等于旋轉(zhuǎn)角,然后判斷0AC4為等邊
三角形得到0AC4=6O。,從而得到旋轉(zhuǎn)角的度數(shù).
【詳解】解:EEL4CB=90°,0ABC=3O°,
EBA=60°,
fflABC繞點C順時針旋轉(zhuǎn)至HAbC,使得點4恰好落在AB上,
回CV=C4,0AC4,等于旋轉(zhuǎn)角,
團0ACA為等邊三角形,
a3ACA'=60°,
即旋轉(zhuǎn)角度為60。.
故選:B.
【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于
旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.本題的關(guān)鍵是證明0AC4'為等邊三角形,
5.(2020春?北京?八年級昌平一中??计谀┤绻粋€多邊形的內(nèi)角和等于720。,則這個多邊形是()
A.四邊形B.五邊形C.六邊形D.七邊形
【答案】C
【詳解】試題分析:這個正多邊形的邊數(shù)是n,則(n-2)?180。=720。,解得:n=6.則這個正多邊形的邊
數(shù)是6.故選C.
考點:多邊形內(nèi)角與外角.
6.(2020春?北京?八年級人大附中??计谀┤鐖D,平行四邊形A8C。的周長為52c%,對角線AC與BD交
于點。,AC_L是8c的中點,AAOD的周長比AAOB的周長多6c則AE的長度是()
A.8cmB.5cmC.4cmD.3cm
【答案】A
【分析】由口ABCD的周長為52cm,對角線AC、BD相交于點0,若回AOD的周長比回AOB的周長多6cm,可
得AB+AD=26cm,AD-AB=6cm,求出AB和AD的長,得出BC的長,再由直角三角形斜邊上的中線性質(zhì)即可
求得答案.
【詳解】即ABCD的周長為52cm,
團AB+AD=26cm,OB=OD,
00AOD的周長比I3AOB的周長多6cm,
0(OA+OD+AD)-(OA+OB+AB)=AD-AB=6cm,
團AB=10cm,AD=16cm.
團BC二AD二16cm.
團AC回AB,E是BC中點,
1
團AE=一BC=8cm;
2
故選:A.
【點睛】本題考查了平行四邊形的性質(zhì)、直角三角形斜邊上的中線性質(zhì).熟練掌握平行四邊形的性質(zhì),由
直角三角形斜邊上的中線性質(zhì)求出AE是解決問題的關(guān)鍵.
VH2
7.(2023秋?遼寧撫順?八年級統(tǒng)考期末)若關(guān)于x的方程一-——1的解為負數(shù),則m的取值范圍是()
x+1x+1
A.m<2B.m<3
C.機<2且D.機<3且機。2
【答案】D
【分析】先銀分式方程求得解為彳=根-3,再根據(jù)方程銀為負數(shù)和分式有意義條件列不等式求解即可.
m2
【詳解】解:多—三二1,
x+1x+1
m-2=x+l,
x=m—3,
回原方程解為負數(shù),
[Em—3<0,
0m<3,
團x+lwO,
團加一3+1wO,
團,
回機<3且加。2,
故選:D.
【點睛】本題考查解分式方程,熟練掌握根據(jù)分式方程解的情況求參是解題的關(guān)鍵.
8.(2023秋,重慶沙坪壩?八年級重慶八中校考期末)已知。+。=-3,用=7,則多項式儲6+M2一。一人的值為
()
A.24B.18C.-24D.-18
【答案】D
【分析】先將/6+"2一°一6進行因式分解,然后整體代入求值即可.
【詳解】解:^\a+b=-3,ab=1,
^crb+ab2-a—b
—ab(a+b)—(a+b)
=(a+b)(ab—1)
=(—3)x(7—1)
=—18.
故選:D.
【點睛】本題主要考查了代數(shù)式求值以及因式分解的應(yīng)用,解決本題關(guān)鍵是正確完成分解因式.
[2,
9.(2021春?北京?八年級北京東方德才學校??计谀?若關(guān)于x的一元一次不等式組3恰有3個整
4x+l>a
數(shù)解,且一次函數(shù))=(“-2卜+。+1不經(jīng)過第三象限,則所有滿足條件的整數(shù)。的值之和是()
A.-2B.-1C.0D.1
【答案】C
121
—xx—1
【分析】根據(jù)關(guān)于尤的一元一次不等式組3恰有3個整數(shù)解,可以求得。的取值范圍,再根據(jù)一次
4x+l>a
函數(shù)y=(a-2)尤+a+l不經(jīng)過第三象限,可以得到。的取值范圍,結(jié)合不等式組和一次函數(shù)可以得到最后。
的取值范圍,從而可以寫出滿足條件的。的整數(shù)值,然后相加即可.
—XX—1Z7—1
【詳解】解:由不等式組3,得一0<3,
4x+l>a
’21
—%>x—1
回關(guān)于尤的一元一次不等式組3恰有3個整數(shù)解,
4尤+12。
0-1<---<0,
4
解得-3<aSl,
回一次函數(shù)方(。2)x+a+1不經(jīng)過第三象限,
0?-2<0且<7+1>0,
0-l<a<2,
又回-3ca41,
0-l<a<l,
回整數(shù)。的值是-1,0,1,
團所有滿足條件的整數(shù)a的值之和是:-l+0+l=0,
故選:C.
【點睛】本題考查一次函數(shù)的性質(zhì)、一元一次不等式組的整數(shù)解,解答本題的關(guān)鍵是明確題意,求出。的
取值范圍,利用一次函數(shù)的性質(zhì)和不等式的性質(zhì)解答.
10.(2022春?安徽滁州?八年級??计谀┛贏BCD中,/A5c的角平分線交線段4。于點E,DE=1,點、F
是班中點,連接CF,過點P作PGJL3C,垂足為G,設(shè)AB=x,若口43。)的面積為8,BG的長為整數(shù),
則整數(shù)x的值為()
A.1B.2C.3D.1或3
【答案】C
【分析】根據(jù)題意和平行四邊形的性質(zhì),可以得到AD和43的關(guān)系,然后根據(jù)口A3CD的面積為8,FG的
長為整數(shù),從而可以得到整數(shù)x的值.
【詳解】解:如圖所示,延長G尸交AZ)于點H,
團四邊形A3CD是平行四邊形,F(xiàn)G1BC,
?AD〃BC,ZFHE=ZFGB=90°,
⑦/HEF=NGBF,
團點尸是郎中點,
⑦EF=BF,
在,HEF和GB尸中,
ZFHE=ZFGB
<ZHEF=ZGBF
EF=BF
0AHEF^AGBF(AAS),
⑦HF=GF,
@HG=2GF,
團砥平分/ABC,
^\ZABE=ZEBC,
BAD//BC,
⑦ZAEB=NEBC,
國NABE=NAEB,
團AB=AE,
團AB=%,
團AE=x,
團DE=1,
團AD=x+l,
EtoABCD的面積為8,FG的長為整數(shù),
0(^+l).2GF=8,
即:(x+l1G/=4,
團整數(shù)x為0或1或3.
當x=0時,AB=O,不符合題意,舍去;
當x=l時,AB=1,AD=2,則此時平行四邊形的面積不可能是8,故舍去;
團元=3.
故選:c.
【點睛】本題考查平行四邊形的性質(zhì)和面積,全等三角形的判定和性質(zhì),角平分線的定義,等腰三角形的
判定,不定方程等知識.解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.
二.填空題(共8小題,每題3分,滿分24分)
11.(2020春?北京?八年級北京市第二中學分校校考期末)如圖,在RtAABC中,NACB=90°,。是A8的中
點,若NA=26°,則NBDC的度數(shù)為.
I
CA
【答案】52。
【分析】根據(jù)直角三角形的性質(zhì)得AD=CD,由等腰三角形性質(zhì)結(jié)合三角形外角性質(zhì)可得答案.
【詳解】H3ACB=90°,D是AB上的中點,
0CD=AD=BD,
fflDCA=EA=26°,
00BDC=20A=52°.
故答案為52。.
【點睛】此題考查了直角三角的性質(zhì)及三角形的外角性質(zhì),掌握直角三角形斜邊中線等于斜邊一半的性質(zhì)
是解題的關(guān)鍵.
12.(2022春?北京延慶?八年級統(tǒng)考期末)平面直角坐標系只力中,直線>=依+分與y=〃沅+〃相交于點M(2,4),
下列結(jié)論中正確的是(填寫序號).
y=kx+b[x=2
①關(guān)于X,y的方程組f,的解是,;
一[y=mc+n[y=4
②關(guān)于x的不等式fcv+b<7nv+〃的解集是x>2;
③k+b<。.
【答案】①②/②①
【分析】根據(jù)一次函數(shù)的性質(zhì)、一次函數(shù)與方程組、一次函數(shù)與不等式的關(guān)系,利用數(shù)形結(jié)合的思想求解.
【詳解】解:直線廣質(zhì)+8與、=血+〃相交于點M(2,4),
[y=kx+b\x=2
???關(guān)于x,y的方程組’的解是,,
=mx+n[y=4
故①的結(jié)論正確;
由圖知:當了>2時,函數(shù)對應(yīng)的點都在函數(shù)下方,
因此關(guān)于x的不等式依+6<癖+〃的解集是:x>2,
故②的結(jié)論正確;
由圖知:當x=l時,函數(shù)>=h+6圖象對應(yīng)的點在x軸的上方,
因止匕左+£>>0,
故③的結(jié)論不正確;
故答案為:①②.
【點睛】本題考查了一次函數(shù)與方程組,一次函數(shù)與不等式(組)的關(guān)系及數(shù)形結(jié)合思想的應(yīng)用,解題的關(guān)
鍵是仔細觀察圖形,注意幾個關(guān)鍵點,利用數(shù)形結(jié)合進行求解.
13.(2023秋?江西撫州?八年級臨川一中??计谀┰贏BC中,AB=AC,NR4c=120。,。為ABC形內(nèi)
一點,以AD為腰作等腰A/ME,使=連接BE、CD,若M、N分別是。區(qū)3C的中點,腦V=l,
則8的長為
【分析】如圖,連接3。,取3D的中點/,連接萬MFN,先證明..AE3紂ADC(SAS),得BE=CD,根
據(jù)三角形的中位線定理可得BE,FN=;CD,由平行線的性質(zhì)和三角形的內(nèi)角和定理可得
ZMFN=60°,所以一^RWN是等邊三角形,可得結(jié)論.
回NBAC-ABAD=AEAD-Z.BAD,
即=
在AAEB和AADC中,
AE=AD
</BAE=/CAD,
AB=AC
團AEB^AZ)C(SA5),
團BE-CD,
團M是團的中點,月是30的中點,
團引以是的中位線,
^\FM=-BE,FM//BE,
2
?ZDFM=NEBD,
同理得,F(xiàn)N=-CD,FNCD,
2
FM=FN,ZFNB=ZDCBf
團ZDFN=ADBC+ZFNB=NDBC+NDCB,
團ZMFN=ZDFM+ZDFN=ZEBD+ZDBC+ZDCB=180°-120°=60°,
團一月WN是等邊三角形,
國MN=FN=1,
團CD=2.
故答案為:2.
【點睛】本題主要考查了全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定和性質(zhì)、三角
形的中位線定理等知識的綜合運用,解題的關(guān)鍵是證明團尸是等邊三角形.
14.(2023秋?山東淄博?八年級??计谀?若關(guān)于x的分式方程三+.=三無解,則機的值為.
x-2x-4x+2-
【答案】10或T或3
【分析】分式方程無解的情況有兩種:(1)原方程存在增根;(2)原方程約去分母后,整式方程無解.
【詳解】解:(1)x=-2為原方程的增根,
止匕時有2(x+2)+mx=5(x—2),即2x(—2+2)-2m=5x(-2—2),
解得機=10;
(2)%=2為原方程的增根,
止匕時有2(x+2)+mx=5(x—2),即2x(2+2)+2m=5x(2-2),
解得加=-4.
(3)方程兩邊都乘(x+?x-2),
得2(x+2)4-mx=5(x-2),
化簡得:(〃z-3)x=-14.
當相=3時,整式方程無解.
綜上所述,當機=10或?"=-4或〃7=3時,原方程無解.
故答案為:10或T或3.
【點睛】本題考查的是分式方程的解,解答此類題目既要考慮分式方程有增根的情形,又要考慮整式方程
無解的情形.
15.(2023秋?湖北武漢?八年級??计谀?已知關(guān)于x的多項式辦2+bx+c(a*0),下列四個結(jié)論:
①當x=l時,ax2+bx+c=0,則a+b+c=0;
②若a-"c=0,則多項式/+fcc+c有一個因式是x+1;
(3)^b2-4ac=0,則多項式加+8x+c的最小值是0;
④若ox2+bx+c=a(x-tn)(x-n),貝lj(〃z+l)("+l)=^~.
a
其中正確的是(填寫序號).
【答案】①②④
【分析】①將x=l代入方2+云+°=0,即可判斷;②當尸_1時,ax2+bx+c=Q,即可判斷;③
依2+bx+c=Jx+21+以二2,根據(jù)平方的非負性,即可判斷;④當卡-1時,
2a)4a
6ix2+Zzx+c=6Z(-l-m)(-l-n)=tz(m+l)(n+l);%=—1時,ax2+bx+c=a-b+c,則4(根+1)("+1)=4—8十0,
即可判斷.
【詳解】①將尤=1代入分之+加;+°=0,得〃+Z?+c=O,所以①正確;
②若。-6+。=0,則當x=-l時,ax2+bx+c=O,則多項式依2+bx+c有一個因式是兄+1;所以②正確
b\4ac-b2
③ax2+bx+c=aXH--?--+-4a
2〃
?/b2—4ac=0
1
2(bY4ac—b(bV
ax+bxC=d\XH-----H------------------ClXH------
V2a)4a\2a)
二.1>0時,^+to+c=X+AY+±Ez£=J%+AY>0
V2aJ4a\2a)
2
〃<0時,渥+如+,=/+2]+££=[尤+對<0
V2aJ4a\la)
團若/-4QC=0,則多項式a/+b%+c的最值是0,
所以③錯誤;
④ax2+bx+c=a(x-m)(x-n)
團當x=-l時,ov2+Zzx+c=6z(-l-m)(-l-M)=di(m+l)(n+l)
當無二一1時,ax2+bx+c=a-b+c
回〃(根+1乂〃+1)=4—》+。
a-b+c
團(帆+1)(〃+1)—
a
所以④正確
故答案為:①②④
【點睛】本題考查多項式求值、平方的非負性,因式分解的應(yīng)用,解題的關(guān)鍵是明確
2,(bY4ac-b2
ax+bx+c=a\XHH----------
V2aJ4a
16.(2023秋?重慶沙坪壩?八年級重慶一中??计谀┤鐖D,在數(shù)IBC中,ZABC=90°,BC=AB,P為ABC
內(nèi)一點,且9=3,PB=2,ZBPC=135°,貝I].ABC的面積為.
5+272
【答案】
2-
【分析】把一PBC繞點BC逆時針旋轉(zhuǎn)90。得到△3DA,根據(jù)旋轉(zhuǎn)的性質(zhì)可得△尸3。是等腰直角三角形,根
據(jù)等腰直角三角形的性質(zhì)求出產(chǎn)。,ZPDB=45。,然后判斷出/PD4=90。,與△ADC是直角三角形;
在直角三角形&R4D中,根據(jù)勾股定理求出AD,在直角三角形ZW)C中,根據(jù)勾股定理求出AC,再求出A3,
最后根據(jù)面積公式求出即可.
【詳解】解:如圖,
把PBC繞點BC逆時針旋轉(zhuǎn)90。得到ABDA,
根據(jù)旋轉(zhuǎn)的性質(zhì)可得△PfiD是等腰直角三角形,
BD=BP=2,ZADB=ZCPB=135°,
PD=>/2PB=20,NBDP=45°
ZPDA=ZADB-ZBDP=135°-45°=90°
AD2=PA2-PD2=32-(2A/2)2=1,
:.AD^1
在直角三角形△ADC中
AC2=AD2+DC2=I2+(272+1)2=10+4^
寫=5+20
ABC22
故答案為:5+2、.
2
【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,等腰直角三角形的判定與性質(zhì),熟記各性質(zhì)并作輔助線構(gòu)造
出等腰直角三角形和直角三角形是解題的關(guān)鍵.
17.(2023秋?重慶江北?九年級字水中學??计谀┩趵习孱A(yù)定了一批羊排、羊腿、精品單肉,第一批預(yù)定
羊排的數(shù)量(斤)是精品羊肉的2倍,羊腿的數(shù)量(斤)是羊排、精品羊肉的數(shù)量之和.由于品質(zhì)優(yōu)良預(yù)
訂量暴增,王老板按照相同的價格加緊采購了第二批,其中第二批羊腿的數(shù)量占第二批總數(shù)量的工,此時兩
批羊腿總數(shù)量達到了羊排、羊腿、精品羊肉三種總量的盤,而羊排和精品羊肉的總數(shù)量之比為8:5,若羊
排、羊腿、精品羊肉的成本價分別為50元、42元、38元,羊排的售價為每斤64元,銷售中,王老板為回
饋顧客,將兩批羊排總量的:送鄰居免費品嘗,其余羊排、羊腿、精品羊肉全部實完,總利潤率為16%,
O
7
且羊腿的銷售單價不高于羊排、精品羊肉銷售單價之和的則精品羊肉的單價最低為元.
【答案】40
【分析】設(shè)第一批精肉的數(shù)量為x斤,則羊排數(shù)量為2x斤,羊腿數(shù)量為3x斤,設(shè)第二批總重量為y斤,則
第二批羊腿重量為!y斤,根據(jù)題意,得3尤+!>=[(6尤+y),求得y=12x,從而求得第二批羊排重量為6x
60lo
斤,精肉重量為4x斤,總成本為50(2x+6x)+42(3x+2x)+38(x+4x),設(shè)羊排價格為加元,精肉價格為〃
元,貝!J總禾!J潤為14(2x+6x—x)+(加-42)(3x+2x)+(〃-38)(x+4x),根據(jù)題意,得
[50(2x+6x)+42(3%+2x)+38(x+4x)]xl6%=14(2%+6x-x)+(m-42)(3x+2x)+(〃-38)(%+4x),
7
m<—(64+n),求n的最小值即可.
【詳解】解:設(shè)第一批精肉的數(shù)量為x斤,則羊排數(shù)量為勿斤,羊腿數(shù)量為3x斤,設(shè)第二批總重量為y斤,
羊排重量為。斤,則第二批羊腿重量為斤,
根據(jù)題意,得3尤+Jy=[(6x+y),
Olo
解得y=I2x,
回羊排和精品羊肉的總數(shù)量之比為8:5,
回(2%+。):(x+12x-2x-a)=8:5,解得”=6x,
團精肉重量為4x斤,
團總成本為50(2彳+6彳)+42(3*+2彳)+38(%+4%)元,
設(shè)羊腿價格為加元,精肉價格為"元,
貝!J總禾!]潤為14(2工+6%—%)+(〃2-42)(3左+2%)+("-38)(%+4力元,
根據(jù)題意,得:
[50(2x+6x)+42(3x+2x)+38(x+4x)]xl6%=14(2尤+6x—x)+(加一42)(3x+2尤)+(〃-38)(x+4x),解得
m+n=96,
團羊腿的銷售單價不高于羊排、精品羊肉銷售單價之和的看7,
7
<—(64+M)
解得71>40,回"的最小值為40.
故答案為:40.
【點睛】本題考查了一元一次不等式的應(yīng)用(利潤問題),最值問題,正確理解題意,合理設(shè)未知數(shù),列出
符合題意的等式,不等式是解題的關(guān)鍵.
18.(2023秋?四川成都?八年級四川省成都市七中育才學校??计谀┤鐖D,在平面直角坐標系xOy中,已
知/AO3=90。,ZA=60°,點A的坐標為卜2代,2),若直線y=-2x+2沿了軸平移根個單位后與,498仍
有公共點,則機的取值范圍是
【答案】-2AMmM2+2用-26MmM2
【分析】根據(jù)題意畫出圖形,求出點2的坐標,再求出過點A和點8且與直線,=-2芯+2平行的直線解析
式,分別求出與x軸的交點坐標即可解決問題.
【詳解】解:過點A作AE_Lx軸于點E,過點B作8F_Lx于點F,如圖,
A(-2V3,2),
AE=?.,OE=2-j3
根據(jù)勾股定理得,AO^AE'OE?=4,
ZAOE=30。,
ZAOB=90°,ZCAO=60°
:.ZABO=30°
.-.AB=2AO=8
BO=4AB1-AO1=4>/3
又Z.BOF=180°-ZAOE-ZAOB=60°
:.ZOBF=30°
OF=-BO=2s/3
2
:.BF^^BOr-OF-=6
8(266)
對于丁=-2%+2,當y=。時,一2x+2=0,
..X—1,
團直線y=-2x+2與X軸的交點坐標為(1,0);
設(shè)過點A且與直線,=-2x+2平行的直線解析式為y=-2x+p,
把A(-2括,2)代入y=-2尤+。,得:2=-2X(-2A/3)+P,
p—2—4\/^",
y=-2x+2-4\/3,
當y=0時,-2x+2-4石=0,
x=1-2,\/3
回直線y=-2x+2—4指與x軸的交點坐標為(1-2后0)
設(shè)過點8且與直線y=-2x+2平行的直線解析式為y=-2x+q,
把2(2?6)代入>=-2尤+%得:6=-2x2g+g,
q=6+4A/3,
y-—2x+6+4,\/3,
當>=0時,-2X+6+4AN=0,
x=3+2^3*,
y=-2x+6+與x軸的交點坐標為(3+2如,0)
回直線y=-2x+2沿x軸平移m個單位后與AOB仍有公共點,則m的取值范圍是1--14機43+26-1,
BP-2^<71;<2+273,
故答案為:-2^<m<2+2^
【點睛】本題主要考查了求一次函數(shù)解析式,一次函數(shù)圖像的平移,求出直線與無軸的交點坐標是解答本題
的關(guān)鍵
三.解答題(共9小題,滿分66分)
19.(2022春?北京朝陽?八年級統(tǒng)考期末)如圖,在平行四邊形A3CD中,點E,尸分別是邊AD,3c的中
點.求證:AF=CE.
AED
【答案】詳見解析
【分析】先根據(jù)平行四邊形的性質(zhì),得"》=CB,再證明四邊形AECV是平行四邊形即可.
【詳解】證明:在平行四邊形A3CD中,AD=CB,
團點E,尸分別是邊A。,BC的中點,
^AE=-AD,CF=-BC,
22
團AE=CF,
0AEIICF,
回四邊形AECF是平行四邊形,
SAF=CE.
【點睛】本題主要考查了平行四邊形的性質(zhì)及判定,熟練運用平行四邊形的性質(zhì)及判定推理論證是本題的
關(guān)鍵.
20.(2023秋?北京密云?八年級統(tǒng)考期末)交通是經(jīng)濟的脈絡(luò)和文明的紐帶.截至2020年底,我國高速鐵路
運營里程五年間翻了近一番,穩(wěn)居世界第一,居民出行更加便捷.據(jù)悉,甲乙兩城市相距800千米,乘坐
高鐵列車比乘坐普通列車的運行時間縮短了4小時,已知高鐵列車的平均速度是普通列車平均速度的2.5倍,
求高鐵列車的平均速度.
【答案】300km/h
【分析】設(shè)普通列車的平均速度為xkm/h,則高鐵列車的平均速度為2.5xkm/h,根據(jù)乘坐高鐵列車比乘坐
普通列車的運行時間縮短了4小時列分式方程求解.
【詳解】解:設(shè)普通列車的平均速度為xkm/h,則高鐵列車的平均速度為2.5xkm/h,
800800,
------=--------4
2.5%x
解得:x=120,
經(jīng)檢驗:尤=120是原分式方程的解,且符合實際意義,
團2.5x=2.5x120=300(km/h),
答:高鐵列車的平均速度為300km/h.
【點睛】此題考查了分式方程的應(yīng)用,正確理解題意找到等量關(guān)系列得方程是解題的關(guān)鍵.
21.(2022秋?北京豐臺?八年級期末)觀察下列算式,完成問題:
算式①:42-22=12=4X3
算式②:62-42=20=4x5
算式③:82-62=28=4x7
算式④:102-82=36=4x9
⑴按照以上四個算式的規(guī)律,請寫出算式⑤:;
(2)上述算式用文字表示為:"任意兩個連續(xù)偶數(shù)的平方差都是4的奇數(shù)倍”.若設(shè)兩個連續(xù)偶數(shù)分別為2”和
2〃+2(〃為整數(shù)),請證明上述命題成立;
⑶命題"任意兩個連續(xù)奇數(shù)的平方差都是4的奇數(shù)倍”是否成立?若成立,請證明;若不成立,請舉出反例.
【答案】(1)122-102=44=4x11
⑵見解析
⑶不成立,反例見解析
【分析】(1)根據(jù)題意寫出算式⑤,即可;
(2)利用平方差公式進行因式分解,即可;
(3)設(shè)兩個連續(xù)奇數(shù)分別為2〃+1和2〃+3(〃為整數(shù)),利用平方差公式進行因式分解,即可.
【詳解】(1)解:根據(jù)題意得:算式⑤:122-102=44=4x11;
故答案為:122—1()2=44=4x11
(2)解:設(shè)兩個連續(xù)偶數(shù)分別為2〃和2〃+2("為整數(shù)),
⑵7+2)2-(2W/
=(2〃+2+2〃)(2〃+2—2〃)
=2(4"+2)
=4(2〃+1),
團4(2〃+1)是4的奇數(shù)倍,
團任意兩個連續(xù)偶數(shù)的平方差都是4的奇數(shù)倍;
(3)解:不成立,
設(shè)兩個連續(xù)奇數(shù)分別為2〃+1和2〃+3為整數(shù)),
(2"+3)2-(2”+以
=(2,z+3+2及+1)(2〃+3-2n-1)
=2(4〃+4)
=4(2"+2)
回2〃+2是偶數(shù),
團任意兩個連續(xù)奇數(shù)的平方差不是4的奇數(shù)倍,
例如:32-F=8是4的2倍,不是奇數(shù)倍.
【點睛】本題考查了因式分解一一平方差公式的應(yīng)用,有理數(shù)的混合運算,合理應(yīng)用公式是解決本題的關(guān)鍵.
22.(2023秋?北京石景山?八年級??计谀┤鐖D,在平面直角坐標系x分中,將格點403繞某點逆時針
旋轉(zhuǎn)角“(0<。<180。)得到格點.ECD,點A與點E,點。與點C,點2與點。是對應(yīng)點.
⑴請通過畫圖找到旋轉(zhuǎn)中心,將其標記為點并寫出點/的坐標;
(2)直接寫出旋轉(zhuǎn)角a的度數(shù).
【答案】⑴畫圖見解析,"(2,2)
(2)90°
【分析】(1)畫出對應(yīng)點連線段AE和OC的垂直平分線的交點即為旋轉(zhuǎn)中心,從而得到坐標;
(2)根據(jù)對應(yīng)點A和E與旋轉(zhuǎn)中心M的連線所成的角即為旋轉(zhuǎn)角,由圖像可直接得出.
【詳解】(1)解:如圖,旋轉(zhuǎn)中心M即為所求,
“(2,2);
回旋轉(zhuǎn)角為a=ZAME=90°.
【點睛】本題考查了旋轉(zhuǎn)畫圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,解題的關(guān)鍵是理解對應(yīng)點連線段的垂直平分線的交點
即為旋轉(zhuǎn)中心.
23.(2022秋?北京海淀?八年級校考期末)王嘉和張淇兩位同學進行100米長跑比賽,王嘉同學在比賽時不
小心摔了一跤,浪費了5秒鐘.事后,王嘉說:"我倆所用時間的和為60秒."張淇同學說:"如果不算王嘉
摔跤所浪費的時間,他跑完全程的平均速度是我跑完全程平均速度的L25倍."據(jù)此信息,請你判斷哪位同
學獲勝?兩人跑完全程的時間相差多少秒?
【答案】王嘉同學獲勝,兩人跑完全程的時間相差與秒
【分析】設(shè)王嘉同學跑完全程的時間是尤秒,則張淇同學跑完全程的時間是(60-力秒,利用速度=路程+時
間,結(jié)合"如果不算王嘉摔跤所浪費的時間,他跑完全程的平均速度是淇淇跑完全程平均速度的L25倍",即
可得出關(guān)于x的分式方程,解之經(jīng)檢驗后,即可得出王嘉同學跑完全程的時間,及張淇同學跑完全程的時間,
二者比較做差后,即可求出結(jié)論.
【詳解】解:設(shè)王嘉同學跑完全程的時間是x秒,則張淇同學跑完全程的時間是(60-力秒,
根據(jù)題意得:當=1.25**-,
x-56。一x
左力,口265
解得:x=~
經(jīng)檢驗,X=學是所列方程的解,且符合題意,
““265275
/.60—x=60-------=------.
99
26527527526510x
59999
團王嘉同學獲勝,兩人跑完全程的時間相差與秒.
【點睛】本題考查了分式方程的應(yīng)用,找準等量關(guān)系,正確列出分式方程是解題的關(guān)鍵.
24.(2023秋?重慶渝中?八年級重慶巴蜀中學??计谀┎牧弦唬喝?。是正整數(shù),。除以13的余數(shù)為1,則
稱。是"映辰數(shù)"例如:14是正整數(shù),且14+13=11,則14是"映辰數(shù)”;41是正整數(shù),且41+13=32,
則41不是"映辰數(shù)"
材料二:對于任意四位正整數(shù)p,p的千位數(shù)字為。,百位數(shù)字為b,十位數(shù)字為c,個位數(shù)字為%規(guī)定:
F(p)=---------------
-22b+10d
請根據(jù)以上材料,解決下列問題:
⑴判斷:300,1029是不是〃映辰數(shù)〃,并說明理由.
(2)若四位正整數(shù)q是"映辰數(shù)",q的千位數(shù)字比百位數(shù)字少1,千位數(shù)字與百位數(shù)字的和不大于4,且阿J
是有理數(shù),求所有滿足條件的必
【答案】(1)300是"映辰數(shù)",1029不是"映辰數(shù)",理由見解析;
(2)4=1236或q=1288
【分析】(1)根據(jù)定義進行判斷;
(1)設(shè)q的千位數(shù)字為百位數(shù)字為6,十位數(shù)字為c,個位數(shù)字為力根據(jù)題意,按要列出題目中所有
條件的等式及不等式,找到符合條件的"映辰數(shù)",然后計算炳辦,判斷其是否為有理數(shù)即可確定4的值.
【詳解】(1)300是"映辰數(shù)”,1029不是"映辰數(shù)",
理由:0300-13=231,1029+13=792
0300是"映辰數(shù)”,1029不是"映辰數(shù)",
(2)設(shè)q的千位數(shù)字為a,百位數(shù)字為6,十位數(shù)字為c,個位數(shù)字為“,
a+1-b
a+b<4
則由題意可知:,a且q=1000°+100/7+10c+d=13后+1(左為正整數(shù))
0<c<9
0<J<9
團a=l,b=2,
gp:q=1000+200+10c+d=13左+1,
1199+lOc+J-10c+d+3
貝!J:k=------------------=92+--------------
1313
_1Of+d+3、r—、[“
團一--=機為正整數(shù),BP:10c+d+3=13機
貝!J:3<10c+^+3<102,
團10c+d+3=13,26,39,52,65,78,91,
當lOc+d+3=13時,c—\fd=0,q=1210,
a+c1+1
則:F(q)=不存在歷不,不符合要求;
-22b+10d-44+0
當10c+d+3=26時,c=2,d=3fq=1223,
a+c1+23.____
則:F(q)=不存在同L不符合要求;
-22b+10d-44+30
當10c+d+3=39時,c=3,d=6,q=1236,
貝“:F(G=----"+'—=-—=—=—,⑦《F(q)=」,符合要求;
力-226+lOd-44+60164v/2
當10c+d+3=52時,c=4,d=9,4=1249,
a+c1+45
則:F(q)=_____________________團屈不為無理數(shù),不符合要求;
-22b+10d-44+9046',V46
當10c+d+3=65時,c=6,d=2,<7=1262,
a+c1+67____
則:F(q)=—,不存在,尸①),不符合要求;
—226+10d——44+20
當10c+d+3=78時,c=7,d=5,4=1275,
Q+c11++7784r—~~-[為無理數(shù),不符合要求;
則:F(q)=-22/7+10^--44+50-6-3?團①:
當10c+d+3=91時,c=8,d=8,9=1288,
貝U:F(q)=a+C=-—=2=J_=—,符合要求;
—22)+104-44+80364、2
故9=1236或夕=1288.
【點睛】此題主要考查了新定義,不等式的應(yīng)用及算術(shù)平方根,靈活應(yīng)用新定義是解本題的關(guān)鍵.
25.(2023春?全國?八年級期末)課本第7頁介紹:美國總統(tǒng)伽菲爾德利用圖1驗證了勾股定理,直線/過
等腰直角三角形A5C的直角頂點C:過點A作于點。,過點5作防,/于點E研究圖形,不難發(fā)現(xiàn):
JWDCMCM.(無需證明):
⑴如圖2,在平面直角坐標系中,等腰R3AC3,ZACB=90°,AC=BC,點C的坐標為(0,-2),A點的
坐標為(4,。),求B點坐標;
(2)如圖3,在平面直角坐標系中,直線心y=2x+4分別與y軸,x軸交于點A,B,將直線自繞點A順時針
或逆時針旋轉(zhuǎn)45。得到4,請任選一種情況求4的函數(shù)表達式;
(3)如圖4,在平面直角坐標系,點3(6,4),過點B作軸于點A,作軸于點C,尸為線段3C上
的一個動點,點。(。,2。-4)位于第一象限.問點A,P,。能否構(gòu)成以點。為直角頂點的等腰直角三角形,
若能,請求出。的值;若不能,請說明理由.
【答案】⑴3(-2,2)
(2)順時針:y=;x+4;逆時針:y=-3x+4
,14
(3)能,a=—
【分析】(1)如圖1,過點軸于從證明,CEB%AOC(AAS)推出3E=OC=2,CE=AO=4,可
得3(-2,2);
(2)①若將直線4繞點A順時針旋轉(zhuǎn)45。得到4,過點B作交直線4于點C,過點C作CDLx軸
交于點。,由(1)的模型可得.3CD烏一ABO,求出C(-6,2),再由待定系數(shù)法求函數(shù)的解析式;②若將
直線4繞點A逆時針旋轉(zhuǎn)45。得到12,仿照①中方法求解即可;
(3)分兩種情況討論:當。點下方時,過。點作EF〃x軸交y軸于點E,交BC于點、F,由(1)的模
型可得,一AEQ%QFP,可得EQ=PF=a,他=/。=4-(2a-4)=8-2〃,再由EQ+產(chǎn)Q=6,求出。=2(舍);
14
當。點在上方時,同理可得EQ二尸尸=〃,AE=FQ=2a-4-4=2a-8,再由EQ+FQ=6,可求〃=了.
【詳解】(1)解:如圖2,過點軸于£,
回點C的坐標為(0,-2),A點的坐標為(4,0),
回OC=2,。4=4,
回等腰Rtz\AC3,ZACB=90°,AC=BC,
又團組Ly軸,
回ZBEC=ZAOC=ZACB=90°,
團ZBCE+ZACO=90°,ZBCE+NCBE=90°,
BZACO^ZCBE,
在一CEB和一AOC中,
ZBEC=ZAOC
?ZCBE=ZACO,
BC=AC
回CEB注AOC(AAS),
@BE=OC=2,,CE=AO=4,
BOE=CE-OC=4-2=2,
團3(—2,2);
(2)解:①若將直線4繞點A順時針旋轉(zhuǎn)45。得到4,
如圖3,過點8作交直線4于點C,過點C作8_Lx軸交于點
SBC=AB,
由(1)的模型可得BCDaABO,
回y=2x+4與x軸的交點3(-2,0),A(0,4),
團CD=OB=2,BD=OA=4,
團C(-6,2),
設(shè)直線的解析式為丁=履+匕,
[-6k+b=2
回]b=4'
,k=-
解得3,
/?=4
1,
團—x+4;
②若將直線人繞點逆時針旋轉(zhuǎn)45。得到12,
如圖,過點B作3CLAS交直線4于點C,過點C作CDLx軸交于點Z),
SZCAB=45°,
SBC=AB,
由(1)的模型可得BCD"ABO,
回y=2x+4與x軸的交點8(-2,0),A(0,4),
SCD=OB=2,BD=OA=4,
0C(2,-2),
設(shè)直線4的解析式為、=左'龍+",
(2k'+b'=-2
=-3x+4;
(3)解:點A,P,。能構(gòu)成以點。為直角頂點的等腰直角三角形,理由如下:
當。點A3下方時,過。點作EF〃x軸交y軸于點E,交BC于點、F,
圖4
由(1)的模型可得,-AEQ0一Q尸尸,
S1AE=FQ,EQ=PF,
國8(6,4),
0OA=4,CO=6,
團點。(a,2a-4),
SEQ=PF=a,AE=FQ=4-(2a-4)=8-2a,
^\EQ+FQ=6,
團a+8—2a—6,
解得a=2,
02(2,0),
國。點在第一象限,
00=2(舍);
當。點在A3上方時,如圖5,
同理可得EQ=PF=a,AE=FQ=2a-4-4=2a-8,
^\EQ+FQ=6,
團a+2a—8=6,
14
解得a=1.
14
綜上所述:a的值為
【點睛】本題屬于一次函數(shù)綜合題,主要考查了待定系數(shù)法,全等三角形的判定和性質(zhì),等腰直角三角形
性質(zhì)和判定,坐標與圖形性質(zhì)等知識;解題的關(guān)鍵是正確添加輔助線構(gòu)造全等三角形,結(jié)合坐標與圖形性
質(zhì)解決問題,屬于壓軸題.
26.(2022秋?北京海淀?八年級??计谀?在「ABC中,Z
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025項目管理聘用合同范本
- 2025合同解除權(quán)的適用與限制
- 2025特定供應(yīng)商采購合同范本
- 6人大代表為人民 第2課時 責任在肩 人民在心(教學設(shè)計)-部編版道德與法治六年級上冊
- 人教版七年級(下)第八章第一節(jié)《中東》教學設(shè)計
- 期權(quán)考試試題及答案
- 光電技術(shù)鏈條分析試題及答案
- 2019-2025年一級造價師之建設(shè)工程技術(shù)與計量(水利)綜合練習試卷B卷附答案
- 婦產(chǎn)科學護理試題及答案
- 衛(wèi)生管理考試引導(dǎo)試題及答案
- 【9數(shù)一模】2025年安徽省合肥市蜀山區(qū)九年級中考一模數(shù)學試卷(含答案)
- 田徑運動會各種記錄表格
- 鍋爐爐本體保溫測溫及散熱損失估算
- 運輸風險防控記錄表
- 德育主題班會 《遵義會議》教學課件
- 農(nóng)家肥撒施翻耕施工方案
- GB∕T 11071-2018 區(qū)熔鍺錠-行業(yè)標準
- 產(chǎn)品和服務(wù)戰(zhàn)略
- 遠離手機班會課件
- 一頁紙的勞動合同范本(5篇)
- 2019最新中小學校安全管理制度匯編
評論
0/150
提交評論