




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省濱州市十二校聯(lián)考2025年高三高考測(cè)試(一)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.2.某大學(xué)計(jì)算機(jī)學(xué)院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領(lǐng)域的語(yǔ)音識(shí)別、人臉識(shí)別,數(shù)據(jù)分析、機(jī)器學(xué)習(xí)、服務(wù)器開(kāi)發(fā)五個(gè)方向展開(kāi)研究,且每個(gè)方向均有研究生學(xué)習(xí),其中劉澤同學(xué)學(xué)習(xí)人臉識(shí)別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種3.設(shè),,,則的大小關(guān)系是()A. B. C. D.4.若,,則的值為()A. B. C. D.5.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.16.下列函數(shù)中,圖象關(guān)于軸對(duì)稱(chēng)的為()A. B.,C. D.7.如圖,是圓的一條直徑,為半圓弧的兩個(gè)三等分點(diǎn),則()A. B. C. D.8.小王因上班繁忙,來(lái)不及做午飯,所以叫了外賣(mài).假設(shè)小王和外賣(mài)小哥都在12:00~12:10之間隨機(jī)到達(dá)小王所居住的樓下,則小王在樓下等候外賣(mài)小哥的時(shí)間不超過(guò)5分鐘的概率是()A. B. C. D.9.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.710.已知集合,則()A. B.C. D.11.復(fù)數(shù)滿足,則復(fù)數(shù)等于()A. B. C.2 D.-212.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿足則的取值范圍是______.14.直線是曲線的一條切線為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)__________.15.已知實(shí)數(shù),滿足約束條件則的最大值為_(kāi)_______.16.設(shè)、滿足約束條件,若的最小值是,則的值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知某種細(xì)菌的適宜生長(zhǎng)溫度為12℃~27℃,為了研究該種細(xì)菌的繁殖數(shù)量(單位:個(gè))隨溫度(單位:℃)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/℃14161820222426繁殖數(shù)量/個(gè)2530385066120218對(duì)數(shù)據(jù)進(jìn)行初步處理后,得到了一些統(tǒng)計(jì)量的值,如表所示:20784.11123.8159020.5其中,.(1)請(qǐng)繪出關(guān)于的散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷與哪一個(gè)更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于溫度的回歸方程類(lèi)型(給出判斷即可,不必說(shuō)明理由);(2)根據(jù)(1)的判斷結(jié)果及表格數(shù)據(jù),建立關(guān)于的回歸方程(結(jié)果精確到0.1);(3)當(dāng)溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為多少?參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二成估計(jì)分別為,,參考數(shù)據(jù):.18.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫(xiě)出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點(diǎn)的另外點(diǎn),,求的面積最小值.19.(12分)如圖,在三棱錐中,,,側(cè)面為等邊三角形,側(cè)棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.20.(12分)已知,且滿足,證明:.21.(12分)某中學(xué)準(zhǔn)備組建“文科”興趣特長(zhǎng)社團(tuán),由課外活動(dòng)小組對(duì)高一學(xué)生文科、理科進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷共100道題,每題1分,總分100分,該課外活動(dòng)小組隨機(jī)抽取了200名學(xué)生的問(wèn)卷成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì),將數(shù)據(jù)按照,,,,分成5組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱(chēng)為“文科方向”學(xué)生,低于60分的稱(chēng)為“理科方向”學(xué)生.理科方向文科方向總計(jì)男110女50總計(jì)(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān)?(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“文科方向”的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.參考公式:,其中.參考臨界值:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點(diǎn).求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.2、B【解析】
將人臉識(shí)別方向的人數(shù)分成:有人、有人兩種情況進(jìn)行分類(lèi)討論,結(jié)合捆綁計(jì)算出不同的分配方法數(shù).【詳解】當(dāng)人臉識(shí)別方向有2人時(shí),有種,當(dāng)人臉識(shí)別方向有1人時(shí),有種,∴共有360種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)單排列組合問(wèn)題,考查分類(lèi)討論的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.3、A【解析】
選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、常考題型.4、A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.5、B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫(xiě)出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹(shù),從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類(lèi)與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.6、D【解析】
圖象關(guān)于軸對(duì)稱(chēng)的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對(duì)選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對(duì)稱(chēng)的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對(duì)稱(chēng),故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對(duì)于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對(duì)稱(chēng).7、B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計(jì)算可得;【詳解】解:連接、,,是半圓弧的兩個(gè)三等分點(diǎn),,且,所以四邊形為棱形,.故選:B【點(diǎn)睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.8、C【解析】
設(shè)出兩人到達(dá)小王的時(shí)間,根據(jù)題意列出不等式組,利用幾何概型計(jì)算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣(mài)小哥到達(dá)小王所居住的樓下的時(shí)間分別為,以12:00點(diǎn)為開(kāi)始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣(mài)小哥的時(shí)間不超過(guò)5分鐘的概率為:.故選:C【點(diǎn)睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運(yùn)算能力.9、B【解析】
在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.10、B【解析】
先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B【點(diǎn)睛】本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.11、B【解析】
通過(guò)復(fù)數(shù)的模以及復(fù)數(shù)的代數(shù)形式混合運(yùn)算,化簡(jiǎn)求解即可.【詳解】復(fù)數(shù)滿足,∴,故選B.【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算,復(fù)數(shù)模長(zhǎng)的概念,屬于基礎(chǔ)題.12、B【解析】
可設(shè),將化簡(jiǎn),得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的模長(zhǎng)、除法運(yùn)算,由復(fù)數(shù)的類(lèi)型求解對(duì)應(yīng)參數(shù),屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)約束條件畫(huà)出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫(huà)出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個(gè)位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個(gè)交點(diǎn)分別為,所以的取值范圍為.故答案為:【點(diǎn)睛】本題考查了非線性約束條件下線性規(guī)劃的簡(jiǎn)單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.14、【解析】
根據(jù)切線的斜率為,利用導(dǎo)數(shù)列方程,由此求得切點(diǎn)的坐標(biāo),進(jìn)而求得切線方程,通過(guò)對(duì)比系數(shù)求得的值.【詳解】,則,所以切點(diǎn)為,故切線為,即,故.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解曲線的切線方程有關(guān)問(wèn)題,屬于基礎(chǔ)題.15、1【解析】
作出約束條件表示的可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點(diǎn)的三角形及其內(nèi)部,轉(zhuǎn)化目標(biāo)函數(shù)為當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)點(diǎn)時(shí),直線的截距最大此時(shí)取得最大值1.故答案為:1【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.16、【解析】
畫(huà)出滿足條件的平面區(qū)域,求出交點(diǎn)的坐標(biāo),由得,顯然直線過(guò)時(shí),最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點(diǎn).由得,顯然當(dāng)直線過(guò)時(shí),該直線軸上的截距最小,此時(shí)最小,,解得.故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,是一道中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)作圖見(jiàn)解析;更適合(2)(3)預(yù)報(bào)值為245【解析】
(1)由散點(diǎn)圖即可得到答案;(2)把兩邊取自然對(duì)數(shù),得,由計(jì)算得到,再將代入可得,最終求得,即;(3)將代入中計(jì)算即可.【詳解】解:(1)繪出關(guān)于的散點(diǎn)圖,如圖所示:由散點(diǎn)圖可知,更適合作為該種細(xì)菌的繁殖數(shù)量關(guān)于的回歸方程類(lèi)型;(2)把兩邊取自然對(duì)數(shù),得,即,由.∴,則關(guān)于的回歸方程為;(3)當(dāng)時(shí),計(jì)算可得;即溫度為27℃時(shí),該種細(xì)菌的繁殖數(shù)量的預(yù)報(bào)值為245.【點(diǎn)睛】本題考查求非線性回歸方程及其應(yīng)用的問(wèn)題,考查學(xué)生數(shù)據(jù)處理能力及運(yùn)算能力,是一道中檔題.18、(1);(2)16.【解析】
(1)將極坐標(biāo)方程化為直角坐標(biāo)方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標(biāo)方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標(biāo)方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時(shí)取等號(hào)即的面積最小值為16【點(diǎn)睛】本題主要考查了極坐標(biāo)方程化直角坐標(biāo)方程以及極坐標(biāo)的應(yīng)用,屬于中檔題.19、(1)見(jiàn)解析;(2).【解析】
(1)設(shè)中點(diǎn)為,連接、,利用等腰三角形三線合一的性質(zhì)得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結(jié)果.【詳解】(1)設(shè)中點(diǎn)為,連接、,因?yàn)?,所?又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因?yàn)?,所以,,,平面,又平面,平面平面;?)由于是底面直角三角形的斜邊的中點(diǎn),所以點(diǎn)是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點(diǎn)即為球心,記的中點(diǎn)為點(diǎn),則.由與相似可得,所以.所以三棱錐外接球的體積為.【點(diǎn)睛】本題考查面面垂直的證明,同時(shí)也考查了三棱錐外接球體積的計(jì)算,找出外接球球心的位置是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.20、證明見(jiàn)解析【解析】
將化簡(jiǎn)可得,由柯西不等式可得證明.【詳解】解:因?yàn)椋?,所以,又,所以,?dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本題主要考查柯西不等式的應(yīng)用,相對(duì)不難,注意已知條件的化簡(jiǎn)及柯西不等式的靈活運(yùn)用.21、(1)列聯(lián)表見(jiàn)解析,有;(2)分布列見(jiàn)解析,,.【解析】
(1)由頻率分布直方圖可得分?jǐn)?shù)在、之間的學(xué)生人數(shù),可得列聯(lián)表.根據(jù)列聯(lián)表計(jì)算的值,結(jié)合參考臨界值表可得到結(jié)論;(2)從該校高一學(xué)生中隨機(jī)抽取1人,求出該人為“文科方向”的概率.由題意,求出分布列,根據(jù)公式求出期望和方差.【詳解】(1)由頻率分布直方圖可得分?jǐn)?shù)在之間的學(xué)生人數(shù)為,在之間的學(xué)生人數(shù)為,所以低于60分的學(xué)生人數(shù)為120.因此列聯(lián)表為理科方向文科方向總計(jì)男8030110女405090總計(jì)12080200又,所以有99%的把握認(rèn)為是否為“文科方向”與性別有關(guān).(2)易知從該校高一學(xué)生中隨機(jī)抽取1人,則該人為“文科方向”的概率為.依題意知,所以(),
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年行為經(jīng)濟(jì)學(xué)導(dǎo)論考試卷及答案
- SOF-436-生命科學(xué)試劑-MCE
- RMC-5127-生命科學(xué)試劑-MCE
- 2025年生態(tài)文明與可持續(xù)發(fā)展政策分析考試試卷及答案
- 2025年人工智能行業(yè)人才招聘考試試題及答案
- 2025年基礎(chǔ)數(shù)學(xué)能力測(cè)試試卷及答案
- 2025年酒店管理師資格考試試卷及答案
- 2025年法考筆試模擬試題及答案
- 藝術(shù)鑒賞進(jìn)階:繪畫(huà)技巧與風(fēng)格欣賞課教案
- 生活改變了我1500字(14篇)
- 老年腦卒中護(hù)理
- 教育心理學(xué)實(shí)踐探究
- 門(mén)窗安裝施工安全標(biāo)準(zhǔn)方案
- Module 3 Unit 1 Do you like bananas(說(shuō)課稿)-2024-2025學(xué)年外研版(一起)英語(yǔ)二年級(jí)上冊(cè)
- 外賣(mài)代理授權(quán)合同范例
- 白酒寄售合同協(xié)議書(shū)范文模板
- 歷代中醫(yī)名人
- 垃圾滲濾液處理站運(yùn)維及滲濾液處理投標(biāo)方案(技術(shù)方案)
- 國(guó)家開(kāi)放大學(xué)本科《商務(wù)英語(yǔ)4》一平臺(tái)機(jī)考真題及答案(第二套)
- JG-T 568-2019 高性能混凝土用骨料
- 變電站一鍵順控改造技術(shù)規(guī)范(試行)
評(píng)論
0/150
提交評(píng)論