




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省開封市優(yōu)質高中2025屆高三下學期2月月考數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左、右焦點分別為,過作一條直線與雙曲線右支交于兩點,坐標原點為,若,則該雙曲線的離心率為()A. B. C. D.2.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.3.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且4.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當地的村委會,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明5.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.二項式的展開式中,常數項為()A. B.80 C. D.1607.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.8.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.9.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.10.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q11.已知實數,滿足約束條件,則目標函數的最小值為A. B.C. D.12.若滿足,且目標函數的最大值為2,則的最小值為()A.8 B.4 C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.函數的單調增區(qū)間為__________.14.已知等比數列{an}的前n項和為Sn,若a215.函數在區(qū)間(-∞,1)上遞增,則實數a的取值范圍是____16.在邊長為的菱形中,點在菱形所在的平面內.若,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,設A是由個實數組成的n行n列的數表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數,且aij{1,-1}.記S(n,n)為所有這樣的數表構成的集合.對于,記ri(A)為A的第i行各數之積,cj(A)為A的第j列各數之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數n,對于所有的AS(n,n),求l(A)的取值集合.18.(12分)已知函數,直線為曲線的切線(為自然對數的底數).(1)求實數的值;(2)用表示中的最小值,設函數,若函數為增函數,求實數的取值范圍.19.(12分)已知,函數,(是自然對數的底數).(Ⅰ)討論函數極值點的個數;(Ⅱ)若,且命題“,”是假命題,求實數的取值范圍.20.(12分)在直角坐標系中,圓的參數方程為:(為參數),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,且長度單位相同.(1)求圓的極坐標方程;(2)若直線:(為參數)被圓截得的弦長為,求直線的傾斜角.21.(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內的動點在點右側,拋物線上第四象限內的動點,滿足,求直線的斜率范圍.22.(10分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設,∠,∠,將沿折起,構成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由題可知,,再結合雙曲線第一定義,可得,對有,即,解得,再對,由勾股定理可得,化簡即可求解【詳解】如圖,因為,所以.因為所以.在中,,即,得,則.在中,由得.故選:B本題考查雙曲線的離心率求法,幾何性質的應用,屬于中檔題2.B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.3.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.4.B【解析】
將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.5.C【解析】
根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.6.A【解析】
求出二項式的展開式的通式,再令的次數為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數項為.故選:A.本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.7.B【解析】
先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.8.B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.9.D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.本小題主要考查雙曲線離心率的求法,屬于基礎題.10.C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C11.B【解析】
作出不等式組對應的平面區(qū)域,目標函數的幾何意義為動點到定點的斜率,利用數形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數形結合是解決本題的關鍵.12.A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求出導數,再在定義域上考慮導數的符號為正時對應的的集合,從而可得函數的單調增區(qū)間.【詳解】函數的定義域為.,令,則,故函數的單調增區(qū)間為:.故答案為:.本題考查導數在函數單調性中的應用,注意先考慮函數的定義域,再考慮導數在定義域上的符號,本題屬于基礎題.14.-2【解析】試題分析:∵a2考點:等比數列性質及求和公式15.【解析】
根據復合函數單調性同增異減,結合二次函數的性質、對數型函數的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數的性質和復合函數的單調性可得解得.故答案為:本小題主要考查根據對數型復合函數的單調性求參數的取值范圍,屬于基礎題.16.【解析】
以菱形的中心為坐標原點建立平面直角坐標系,再設,根據求出的坐標,進而求得即可.【詳解】解:連接設交于點以點為原點,分別以直線為軸,建立如圖所示的平面直角坐標系,則:設得,解得,,或,顯然得出的是定值,取則,.故答案為:.本題主要考查了建立平面直角坐標系求解向量數量積的有關問題,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數中有9個1,9個-1.令.一方面,由于這18個數中有9個1,9個-1,從而①,另一方面,表示數表中所有元素之積(記這81個實數之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數,由③知,上述2n個實數中,-1的個數一定為偶數,該偶數記為,則1的個數為2n-2k,所以,對數表,顯然.將數表中的由1變?yōu)?1,得到數表,顯然,將數表中的由1變?yōu)?1,得到數表,顯然,依此類推,將數表中的由1變?yōu)?1,得到數表,即數表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.本題為數列的創(chuàng)新應用題,考查數學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據引入的概念與性質進行推理求解,屬于較難題.18.(1);(2).【解析】
試題分析:(1)先求導,然后利用導數等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設與交點的橫坐標為,利用導數求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設直線與曲線切于點,則,解得,所以的值為1.(2)記函數,下面考察函數的符號,對函數求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數的零點存在性定理及其單調性知唯一的,使.∴;,,∴,從而,∴,由函數為增函數,且曲線在上連續(xù)不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:
3
0
極小值
∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數為增函數.故實數的取值范圍是考點:函數導數與不等式.【方法點晴】函數導數問題中,和切線有關的題目非常多,我們只要把握住關鍵點:一個是切點,一個是斜率,切點即在原來函數圖象上,也在切線上;斜率就是導數的值.根據這兩點,列方程組,就能解決.本題第二問我們采用分層推進的策略,先求得的表達式,然后再求得的表達式,我們就可以利用導數這個工具來求的取值范圍了.19.(1)當時,沒有極值點,當時,有一個極小值點.(2)【解析】試題分析:(1),分,討論,當時,對,,當時,解得,在上是減函數,在上是增函數。所以,當時,沒有極值點,當時,有一個極小值點.(2)原命題為假命題,則逆否命題為真命題。即不等式在區(qū)間內有解。設,所以,設,則,且是增函數,所以。所以分和k>1討論。試題解析:(Ⅰ)因為,所以,當時,對,,所以在是減函數,此時函數不存在極值,所以函數沒有極值點;當時,,令,解得,若,則,所以在上是減函數,若,則,所以在上是增函數,當時,取得極小值為,函數有且僅有一個極小值點,所以當時,沒有極值點,當時,有一個極小值點.(Ⅱ)命題“,”是假命題,則“,”是真命題,即不等式在區(qū)間內有解.若,則設,所以,設,則,且是增函數,所以當時,,所以在上是增函數,,即,所以在上是增函數,所以,即在上恒成立.當時,因為在是增函數,因為,,所以在上存在唯一零點,當時,,在上單調遞減,從而,即,所以在上單調遞減,所以當時,,即.所以不等式在區(qū)間內有解綜上所述,實數的取值范圍為.20.(1);(2)或【解析】
(1)消去參數可得圓的直角坐標方程,再根據,,即可得極坐標方程;(2)寫出直線的極坐標方程為,代入圓的極坐標方程,根據極坐標的意義列出等式解出即可.【詳解】(1)圓:,消去參數得:,即:,∵,,.∴,.(2)∵直線:的極坐標方程為,當時.即:,∴或.∴或,∴直線的傾斜角為或.本題主要考查了參數方程化為普通方程,直角坐標方程化為極坐標方程以及極坐標的幾何意義,屬于中檔題.21.(1)1;(2)【解析】
(1)根據點到焦點的距離為2,利用拋物線的定義得,再根據點在拋物線上有,列方程組求解,(2)設,根據,再由,求得,當,即時,直線斜率不存在;當時,,令,利用導數求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寧夏工業(yè)職業(yè)學院《軟件測試課設》2023-2024學年第二學期期末試卷
- 茂名職業(yè)技術學院《俄羅斯文化基礎》2023-2024學年第二學期期末試卷
- 浙江金融職業(yè)學院《計算力學》2023-2024學年第一學期期末試卷
- 發(fā)光字廣告牌制作合同
- 勞動技術服務合同書
- 手房中介買賣合同書
- 煤炭合作的合同
- 酒類二級經銷商合同
- 循環(huán)借款合同貸款循環(huán)合同
- 房屋租賃給公司合同
- 《職業(yè)健康與環(huán)境保護》課件
- 2024年中國心力衰竭診斷與治療指南更新要點解讀
- 《鄉(xiāng)村治理理論與實踐》課件 第六章 鄉(xiāng)村自治體系概述
- 幼兒園游戲回顧研討
- DB42╱T 620-2010 柑橘果園改造技術規(guī)程
- 《Hadoop大數據平臺構建與應用(第2版)微課版》高職全套教學課件
- 2025-2030年中國手工紙制造行業(yè)市場發(fā)展現狀及前景趨勢分析報告
- GB/T 3920-2024紡織品色牢度試驗耐摩擦色牢度
- 2025年開封大學高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 衛(wèi)生事業(yè)管理學期末題庫(84題)
- 地方特色美食節(jié)活動策劃
評論
0/150
提交評論