天府新區(qū)航空旅游職業(yè)學(xué)院《ORACE數(shù)據(jù)庫(kù)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
天府新區(qū)航空旅游職業(yè)學(xué)院《ORACE數(shù)據(jù)庫(kù)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
天府新區(qū)航空旅游職業(yè)學(xué)院《ORACE數(shù)據(jù)庫(kù)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
天府新區(qū)航空旅游職業(yè)學(xué)院《ORACE數(shù)據(jù)庫(kù)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
天府新區(qū)航空旅游職業(yè)學(xué)院《ORACE數(shù)據(jù)庫(kù)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)天府新區(qū)航空旅游職業(yè)學(xué)院《ORACE數(shù)據(jù)庫(kù)實(shí)驗(yàn)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,以下哪種抽樣方法能夠保證樣本對(duì)總體具有較好的代表性,同時(shí)又能降低抽樣誤差?()A.簡(jiǎn)單隨機(jī)抽樣B.分層抽樣C.整群抽樣D.系統(tǒng)抽樣2、假設(shè)我們有一組關(guān)于學(xué)生成績(jī)的數(shù)據(jù),包括語(yǔ)文、數(shù)學(xué)、英語(yǔ)等科目成績(jī),要分析這些科目成績(jī)之間的相關(guān)性,以下哪種可視化方法較為直觀?()A.熱力圖B.雷達(dá)圖C.散點(diǎn)圖矩陣D.以上都不是3、在對(duì)一家餐廳的營(yíng)業(yè)數(shù)據(jù)進(jìn)行分析,例如菜品銷售數(shù)量、顧客評(píng)價(jià)、營(yíng)業(yè)時(shí)間段等,以制定營(yíng)銷策略和優(yōu)化菜單。以下哪個(gè)因素可能對(duì)餐廳的盈利能力產(chǎn)生最大影響?()A.熱門菜品的推廣B.營(yíng)業(yè)時(shí)間段的調(diào)整C.菜單的更新和優(yōu)化D.以上都是4、數(shù)據(jù)分析中的模型評(píng)估不僅包括在訓(xùn)練集上的表現(xiàn),還需要在測(cè)試集上進(jìn)行驗(yàn)證。假設(shè)我們?cè)谟?xùn)練一個(gè)模型時(shí),發(fā)現(xiàn)訓(xùn)練集上的準(zhǔn)確率很高,但測(cè)試集上的準(zhǔn)確率很低,以下哪種情況可能導(dǎo)致了這種過(guò)擬合現(xiàn)象?()A.模型過(guò)于復(fù)雜B.訓(xùn)練數(shù)據(jù)量不足C.特征選擇不當(dāng)D.以上都是5、在數(shù)據(jù)分析的倫理和法律方面,需要遵循一定的原則和規(guī)范。假設(shè)你處理的是包含個(gè)人敏感信息的數(shù)據(jù),以下關(guān)于數(shù)據(jù)處理的做法,哪一項(xiàng)是最符合倫理和法律要求的?()A.在未獲得授權(quán)的情況下,將數(shù)據(jù)用于其他商業(yè)目的B.對(duì)數(shù)據(jù)進(jìn)行匿名化處理,確保無(wú)法追溯到個(gè)人身份C.忽視數(shù)據(jù)的隱私保護(hù),認(rèn)為分析結(jié)果更重要D.隨意分享數(shù)據(jù)給第三方機(jī)構(gòu)6、關(guān)于數(shù)據(jù)分析中的時(shí)間序列分析,假設(shè)要預(yù)測(cè)某股票價(jià)格在未來(lái)一段時(shí)間的走勢(shì)。時(shí)間序列數(shù)據(jù)具有季節(jié)性、趨勢(shì)性和隨機(jī)性等特點(diǎn)。以下哪種方法可能更適合進(jìn)行準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均法,平滑數(shù)據(jù)B.指數(shù)平滑法,考慮不同權(quán)重C.ARIMA模型,結(jié)合自回歸和移動(dòng)平均D.不進(jìn)行預(yù)測(cè),隨機(jī)猜測(cè)股票價(jià)格7、對(duì)于一個(gè)聚類問(wèn)題,如果事先不知道聚類的類別數(shù),以下哪種方法可以幫助確定合適的類別數(shù)?()A.肘部法則B.輪廓系數(shù)C.Calinski-Harabasz指數(shù)D.以上都是8、在數(shù)據(jù)分析中,若要比較多個(gè)總體的均值是否相等,以下哪種方法較為常用?()A.方差分析B.多重比較C.假設(shè)檢驗(yàn)D.以上都是9、對(duì)于一個(gè)不平衡的數(shù)據(jù)集,若要通過(guò)采樣方法來(lái)平衡數(shù)據(jù),以下哪種采樣策略可能會(huì)導(dǎo)致過(guò)擬合?()A.隨機(jī)過(guò)采樣B.隨機(jī)欠采樣C.SMOTE采樣D.以上都有可能10、數(shù)據(jù)分析中的數(shù)據(jù)血緣追蹤用于了解數(shù)據(jù)的來(lái)源和流向。假設(shè)要追蹤一個(gè)分析報(bào)告中數(shù)據(jù)的演變過(guò)程,以下關(guān)于數(shù)據(jù)血緣追蹤的描述,正確的是:()A.不記錄數(shù)據(jù)的處理步驟和轉(zhuǎn)換過(guò)程,無(wú)法進(jìn)行血緣追蹤B.簡(jiǎn)單地記錄部分?jǐn)?shù)據(jù)的來(lái)源,不考慮整個(gè)流程C.建立完善的數(shù)據(jù)血緣管理系統(tǒng),記錄數(shù)據(jù)的采集、清洗、轉(zhuǎn)換、聚合等全過(guò)程,以便清晰地了解數(shù)據(jù)的來(lái)龍去脈和影響范圍D.認(rèn)為數(shù)據(jù)血緣追蹤是額外的工作,對(duì)數(shù)據(jù)分析沒(méi)有幫助11、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖12、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,以下哪個(gè)原則有助于提高數(shù)據(jù)庫(kù)的性能和可擴(kuò)展性?()A.規(guī)范化B.反規(guī)范化C.減少冗余D.增加索引13、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡(jiǎn)化數(shù)據(jù)集B.對(duì)于錯(cuò)誤數(shù)據(jù),可以根據(jù)其他相關(guān)字段的值進(jìn)行推測(cè)和修正C.忽略重復(fù)記錄,因?yàn)樗鼈儗?duì)數(shù)據(jù)分析結(jié)果影響不大D.不進(jìn)行任何數(shù)據(jù)清洗操作,直接使用原始數(shù)據(jù)進(jìn)行分析14、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)我們要展示不同地區(qū)的銷售額及其隨時(shí)間的變化趨勢(shì),以下哪種可視化圖表可能是最適合的?()A.餅圖B.柱狀圖C.折線圖D.箱線圖15、數(shù)據(jù)預(yù)處理中的特征工程用于創(chuàng)建有意義的特征。假設(shè)要為一個(gè)機(jī)器學(xué)習(xí)模型準(zhǔn)備輸入特征,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始數(shù)據(jù)的所有特征,不進(jìn)行任何處理和轉(zhuǎn)換B.隨意創(chuàng)建新的特征,不考慮其合理性和有效性C.基于對(duì)數(shù)據(jù)的理解和業(yè)務(wù)知識(shí),進(jìn)行特征選擇、提取、構(gòu)建和變換,以提高模型的性能和可解釋性D.認(rèn)為特征工程對(duì)模型性能影響不大,不重視這一環(huán)節(jié)16、在數(shù)據(jù)分析中,數(shù)據(jù)可視化常常用于呈現(xiàn)復(fù)雜的數(shù)據(jù)關(guān)系。以下關(guān)于數(shù)據(jù)可視化工具的說(shuō)法中,錯(cuò)誤的是?()A.Tableau是一款功能強(qiáng)大的數(shù)據(jù)可視化軟件,可連接多種數(shù)據(jù)源進(jìn)行分析和展示B.PowerBI具有直觀的界面和豐富的可視化圖表類型,適合企業(yè)級(jí)數(shù)據(jù)分析C.Excel只能進(jìn)行簡(jiǎn)單的數(shù)據(jù)可視化,對(duì)于大規(guī)模數(shù)據(jù)分析不夠?qū)嵱肈.數(shù)據(jù)可視化工具的選擇只取決于個(gè)人喜好,與數(shù)據(jù)類型和分析需求無(wú)關(guān)17、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是18、在進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性19、在選擇數(shù)據(jù)分析工具時(shí),需要考慮多種因素。假設(shè)要為一個(gè)小型團(tuán)隊(duì)選擇合適的數(shù)據(jù)分析工具,以下關(guān)于工具選擇的描述,正確的是:()A.只追求功能強(qiáng)大的高端工具,不考慮成本和團(tuán)隊(duì)的使用難度B.隨意選擇一個(gè)流行的工具,不考慮其與團(tuán)隊(duì)需求的匹配度C.評(píng)估團(tuán)隊(duì)的技術(shù)水平、數(shù)據(jù)規(guī)模、分析需求和預(yù)算等因素,選擇易于使用、功能滿足需求且性價(jià)比高的數(shù)據(jù)分析工具,如Excel、Python、R等D.認(rèn)為一旦選擇了一個(gè)工具,就不能更換,不考慮工具的更新和發(fā)展20、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可21、在數(shù)據(jù)分析中,數(shù)據(jù)隱私和安全是必須要考慮的問(wèn)題。假設(shè)我們處理的是敏感的個(gè)人數(shù)據(jù)。以下關(guān)于數(shù)據(jù)隱私和安全的描述,哪一項(xiàng)是不正確的?()A.應(yīng)該采取加密、匿名化等技術(shù)手段保護(hù)數(shù)據(jù)的隱私B.遵守相關(guān)的法律法規(guī),如數(shù)據(jù)保護(hù)法、隱私政策等C.只要數(shù)據(jù)在內(nèi)部使用,就不需要考慮數(shù)據(jù)隱私和安全問(wèn)題D.對(duì)數(shù)據(jù)的訪問(wèn)和使用進(jìn)行嚴(yán)格的權(quán)限管理,防止數(shù)據(jù)泄露22、在數(shù)據(jù)分析中,若要比較不同組數(shù)據(jù)的離散程度,以下哪個(gè)指標(biāo)可以使用?()A.方差B.均值C.中位數(shù)D.眾數(shù)23、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過(guò)擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性24、在數(shù)據(jù)挖掘中,Apriori算法常用于挖掘頻繁項(xiàng)集。以下關(guān)于Apriori算法的描述,正確的是?()A.它是一種無(wú)監(jiān)督學(xué)習(xí)算法B.它只能處理數(shù)值型數(shù)據(jù)C.它的計(jì)算復(fù)雜度較低D.它需要事先指定頻繁項(xiàng)集的支持度閾值25、在數(shù)據(jù)分析的地理信息分析中,假設(shè)要分析不同地區(qū)的銷售數(shù)據(jù)與地理因素的關(guān)系。以下哪種技術(shù)或方法可能有助于可視化和理解這種空間關(guān)系?()A.地理信息系統(tǒng)(GIS),繪制地圖和疊加數(shù)據(jù)B.空間自相關(guān)分析,檢測(cè)數(shù)據(jù)的空間依賴性C.克里金插值,估計(jì)未采樣點(diǎn)的值D.不考慮地理因素,僅分析銷售數(shù)據(jù)的數(shù)值特征26、當(dāng)分析一個(gè)網(wǎng)站的用戶訪問(wèn)數(shù)據(jù),包括頁(yè)面瀏覽量、停留時(shí)間、跳出率等,以改進(jìn)網(wǎng)站的用戶體驗(yàn)和布局設(shè)計(jì)。為了確定哪些頁(yè)面需要重點(diǎn)優(yōu)化,以下哪個(gè)指標(biāo)可能是最有價(jià)值的?()A.頁(yè)面瀏覽量B.平均停留時(shí)間C.跳出率D.以上都是27、在數(shù)據(jù)分析的社交網(wǎng)絡(luò)分析中,假設(shè)要研究一個(gè)社交平臺(tái)上用戶之間的關(guān)系和信息傳播。以下哪個(gè)指標(biāo)或概念對(duì)于理解網(wǎng)絡(luò)結(jié)構(gòu)和影響力可能是重要的?()A.度中心性,衡量節(jié)點(diǎn)的連接數(shù)量B.介數(shù)中心性,反映節(jié)點(diǎn)在路徑中的重要性C.接近中心性,體現(xiàn)節(jié)點(diǎn)與其他節(jié)點(diǎn)的接近程度D.不考慮網(wǎng)絡(luò)結(jié)構(gòu),只關(guān)注用戶發(fā)布的內(nèi)容28、在數(shù)據(jù)清洗過(guò)程中,若發(fā)現(xiàn)數(shù)據(jù)存在異常值,以下哪種處理方式較為合理?()A.直接刪除異常值B.對(duì)異常值進(jìn)行修正C.將異常值視為缺失值處理D.分析異常值產(chǎn)生的原因后再?zèng)Q定處理方式29、數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中有著廣泛的應(yīng)用。假設(shè)一家公司想要評(píng)估不同廣告渠道的效果。以下關(guān)于數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過(guò)A/B測(cè)試比較不同廣告版本的效果,確定最優(yōu)方案B.客戶細(xì)分能夠幫助企業(yè)針對(duì)不同客戶群體制定個(gè)性化的營(yíng)銷策略C.僅僅依靠數(shù)據(jù)分析就能夠完全了解客戶的需求和行為,無(wú)需進(jìn)行市場(chǎng)調(diào)研D.數(shù)據(jù)分析可以監(jiān)測(cè)營(yíng)銷活動(dòng)的效果,及時(shí)調(diào)整策略,提高投資回報(bào)率30、在數(shù)據(jù)分析中,對(duì)于高維度的數(shù)據(jù),例如基因表達(dá)數(shù)據(jù)、圖像數(shù)據(jù)等,需要進(jìn)行降維處理以簡(jiǎn)化分析。以下哪種降維方法可能是常用的?()A.主成分分析(PCA)B.線性判別分析(LDA)C.局部線性嵌入(LLE)D.以上都是二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)電商直播行業(yè)的興起帶來(lái)了新的數(shù)據(jù)挑戰(zhàn)和機(jī)遇。以某電商直播平臺(tái)為例,闡述如何運(yùn)用數(shù)據(jù)分析來(lái)評(píng)估主播表現(xiàn)、優(yōu)化直播內(nèi)容、提高觀眾參與度,以及如何利用實(shí)時(shí)互動(dòng)數(shù)據(jù)進(jìn)行精準(zhǔn)營(yíng)銷。2、(本題5分)影視娛樂(lè)行業(yè)可以基于觀眾的觀看數(shù)據(jù)和評(píng)價(jià)數(shù)據(jù)進(jìn)行內(nèi)容創(chuàng)作和推薦。闡述如何運(yùn)用數(shù)據(jù)分析了解觀眾喜好、預(yù)測(cè)熱門題材、優(yōu)化內(nèi)容推薦算法,以及如何應(yīng)對(duì)盜版和非法傳播等問(wèn)題。3、(本題5分)探討在電商平臺(tái)的商品評(píng)價(jià)數(shù)據(jù)中,如何運(yùn)用文本挖掘技術(shù)提取關(guān)鍵信息,改進(jìn)商品質(zhì)量和服務(wù)。4、(本題5分)交通領(lǐng)域的數(shù)據(jù),如交通流量、路況信息、公共交通運(yùn)營(yíng)數(shù)據(jù)等,具有重要的價(jià)值。探討如何運(yùn)用數(shù)據(jù)分析來(lái)優(yōu)化交通規(guī)劃、緩解交通擁堵、提高公共交通的服務(wù)質(zhì)量,并分析數(shù)據(jù)分析在智能交通系統(tǒng)中的關(guān)鍵技術(shù)和應(yīng)用挑戰(zhàn)。5、(本題5分)隨著物聯(lián)網(wǎng)技術(shù)的發(fā)展,智能家居設(shè)備產(chǎn)生了大量的數(shù)據(jù)。請(qǐng)?zhí)接懭绾螌?duì)這些數(shù)據(jù)進(jìn)行分析,以實(shí)現(xiàn)能源管理的優(yōu)化、家庭安全的提升以及用戶生活習(xí)慣的洞察,并分析在數(shù)據(jù)處理和隱私保護(hù)方面的挑戰(zhàn)。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在數(shù)據(jù)分析中,如何處理不平衡數(shù)據(jù)集?請(qǐng)闡述常見(jiàn)的處理方法,如過(guò)采樣、欠采樣、生成合成樣本等,并分析它們的優(yōu)缺點(diǎn)。2、(本題5分)闡述數(shù)據(jù)倉(cāng)庫(kù)中的維度建模方法,包括星型模型、雪花模型等,說(shuō)明它們的特點(diǎn)和適用場(chǎng)景,并舉例說(shuō)明。3、(本題5分)解釋什么是數(shù)據(jù)可視化,以及它在數(shù)據(jù)分析中的重要性。請(qǐng)列舉至少三種常見(jiàn)的數(shù)據(jù)可視化圖表,并說(shuō)明其適用場(chǎng)景。4、(本題5分)描述數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理中的數(shù)據(jù)平滑技術(shù),如移動(dòng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論